精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ex-ax,g(x)=xf(x),设曲线y=g(x)在点(-1,g(-1))处的切线为l(e是
自然对数的底数).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)当a=1时,求曲线y=g(x)图象上与l平行的切线l′的方程,并判断l′与曲线y=f(x)是否存在公共点(若存在,请求出公共点的个数,若不存在,请说明理由).(参考数据:ln2=0.69…,ln3=1.09…)
考点:利用导数研究曲线上某点切线方程,利用导数研究函数的单调性
专题:综合题,导数的综合应用
分析:(Ⅰ)求导数,分类讨论,利用导数的正负,即可求f(x)的单调区间;
(Ⅱ)求出g′(-1)=2,由(x+1)ex-2x=2,可得x=-1或x=ln2,从而可得切线l′的方程;令h(x)=ex-x-(2x-ln22)=ex-3x+ln22,证明函数在(ln3,+∞)上单调递增,在(-∞,ln3)上单调递减,即可得出结论.
解答: 解:(Ⅰ)∵f(x)=ex-ax,
∴f′(x)=ex-a,
∴a≤0时,f′(x)=ex-a>0,即函数在R上单调递增;
a>0时,f′(x)>0,可得x>lna,函数在(lna,+∞)上单调递增,在(-∞,lna)上单调递减;
(Ⅱ)当a=1时,g(x)=xf(x)=x(ex-x),
∴g′(x)=(x+1)ex-2x,
∴g′(-1)=2,
由(x+1)ex-2x=2,可得x=-1或x=ln2,
x=ln2时,g(x)=ln2(2-ln2),
∴切线l′的方程为y-ln2(2-ln2)=2(x-ln2),即y=2x-ln22,
令h(x)=ex-x-(2x-ln22)=ex-3x+ln22,则h′(x)=ex-3,
∴函数在(ln3,+∞)上单调递增,在(-∞,ln3)上单调递减,
∴x=ln3时,函数取得最大值h(ln3)=3-3ln3+ln22>0,
∴h(x)=0有两解,
∴l′与曲线y=f(x)有两个公共点.
点评:本题考查导数知识的综合运用,考查导数的几何意义,考查函数的单调性,正确构造函数,确定函数的单调性是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD,底面ABCD是边长为2的菱形,且∠BAD=60°,PA=PD=2,平面PAD⊥平面ABCD,则它的正视图的面积是(  )
A、
3
B、
3
2
C、3
D、3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校推荐甲、乙、丙、丁4名同学参加A、B、C三所大学的自主招生考试.每名同学只推荐一所大学,每所大学至少推荐一名.则不推荐甲同学到A大学的推荐方案有(  )
A、24种B、48种
C、54种D、60种

查看答案和解析>>

科目:高中数学 来源: 题型:

为了调查我市在校中学生参加体育运动的情况,从中随机抽取了16名男同学和14名女同学,调查发现,男、女同学中分别有12人和6人喜爱运动,其余不喜爱.   
(1)根据以上数据完成以下2×2列联表:
喜爱运动 不喜爱运动 总计
16
14
总计 30
(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.010的前提下认为性别与喜爱运动有关?
(3)将以上统计结果中的频率视作概率,从我市中学生中随机抽取3人,若其中喜爱运动的人数为ξ,求ξ的分布列和均值.参考数据:
P(K2≥k0 0.40 0.25 0.10 0.010
k0 0.708 1.323 2.706 6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

设P(x0,y0)为椭圆
x2
4
+y=1内一定点(不在坐标轴上),过点P的两直线分别与椭圆交于A,C和B,D,若AB∥CD.
(Ⅰ)证明:直线AB的斜率为定值;
(Ⅱ)过点P作AB的平行线,与椭圆交于E,F两点,证明:点P平分线段EF.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的各项均为正数,记A(n)=a1+a2+…+an,B(n)=a2+a3+…+an+1,C(n)=a3+a4+…+an+2,其中n∈N*
(1)若a1=1,a2=5,且对任意n∈N*,三个数A(n),B(n),C(n)依次组成等差数列,求数列{an}的通项公式.
(2)a1=1,对任意n∈N*,三个数A(n),B(n),C(n)依次组成公比为q的等比数列.求数列{an}的前n项和An公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人玩一种猜拳游戏,游戏规则如下:每人只出一只手(有5个手指头),每次出手指数为0,1,2,3,4,5是等可能的,猜拳一次只猜“单”与“双”两个结果.规定:两人手指数之和为偶数则规定猜“双”者获胜,手指数之和为奇数视为猜“单”者获胜,两人都猜中与两人都没猜中视为平局,获胜方得2分,负方得0分,平局各得1分,只要有人累计得分达到4分或者4分以上,则游戏结束.
(1)求甲、乙两人猜拳一次,甲获胜的概率;
(2)求游戏结果时,甲累计得分恰好为4分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1的离心率为e=
6
3
,过C1的左焦点F1的直线l:x-y+2=0被圆C2:(x-3)2+(y-3)2=r2(r>0)截得的弦长为2
2

(1)求椭圆C1的方程;
(2)设C1的右焦点为F2,在圆C2上是否存在点P,满足|PF1|=
a2
b2
|PF2|,若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,曲线C1的方程为ρcos(θ+
π
4
)=
2
,曲线C2的方程为ρ=2cos(π-θ),若点P在曲线C1上运动,过点P作直线l与曲线C2相切于点M,则|PM|的最小值为
 

查看答案和解析>>

同步练习册答案