精英家教网 > 高中数学 > 题目详情
在极坐标系中,曲线C1的方程为ρcos(θ+
π
4
)=
2
,曲线C2的方程为ρ=2cos(π-θ),若点P在曲线C1上运动,过点P作直线l与曲线C2相切于点M,则|PM|的最小值为
 
考点:点的极坐标和直角坐标的互化
专题:选作题,坐标系和参数方程
分析:把极坐标方程化为直角坐标方程,P在曲线C1上运动,过点P作直线l与曲线C2相切于点M,可得|PM|=
|PC2|2-1
,即可求出|PM|的最小值.
解答: 解:曲线C1的方程C1的方程为ρcos(θ+
π
4
)=
2
,化为直角坐标方程为x-y-2=0,
曲线C2的方程为ρ=2cos(π-θ),化为直角坐标方程为(x+1)2+y2=1,圆心为C2(-1,0),半径为1.
∵P在曲线C1上运动,过点P作直线l与曲线C2相切于点M,
∴|PM|=
|PC2|2-1

∵C2到x-y-2=0的距离为
|-1-0-2|
2
=
3
2
2

∴|PM|的最小值为
(
3
2
2
)2-1
=
14
2

故答案为:
14
2
点评:本题主要考查把极坐标方程化为直角坐标方程的方法,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ex-ax,g(x)=xf(x),设曲线y=g(x)在点(-1,g(-1))处的切线为l(e是
自然对数的底数).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)当a=1时,求曲线y=g(x)图象上与l平行的切线l′的方程,并判断l′与曲线y=f(x)是否存在公共点(若存在,请求出公共点的个数,若不存在,请说明理由).(参考数据:ln2=0.69…,ln3=1.09…)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},{bn},满足a1=2,2an=1+an•an+1,bn=an-1(bn≠0).
(Ⅰ)求证数列{
1
bn
}是等差数列,并求数列{an}的通项公式;
(Ⅱ)令cn=bnbn+1,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足约束条件
x2-y2≤0
x-y+2≥0
y≥0
,则目标函数z=2x+y的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设[x]表示不超过x的最大整数,例如,[-3.5]=-4,[2.1]=2.设集合A={(x,y)|x2+y2≤1},集合B={(x,y)|[x]2+[y]2>1},则A∩B表示的平面区域的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
(1)曲线y=sinx的“上夹线”方程为
 

(2)曲线S:y=mx-nsinx(n>0)的“上夹线”的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以O为极点,Ox为极轴,则圆ρ=3cosθ被直线
x=2+2t
y=1+4t
(t是参数)截得的弦长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的通项为an=(-1)n(2n-1)•cos
2
+1前n项和为Sn,则S60=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知z(1+i)=-3+4i(i为虚数单位),复数Z的共轭复数为(  )
A、
1
2
+
7
2
i
B、-
7
2
+
7
2
i
C、
1
2
-
7
2
i
D、-
7
2
-
7
2
i

查看答案和解析>>

同步练习册答案