精英家教网 > 高中数学 > 题目详情
16.在△ABC中,三个内角A、B、C所对的边分别为a,b,c,且$\sqrt{3}bsinC+ccosB=2c$.
(Ⅰ)求角B;
(Ⅱ)若△ABC的面积S=$\sqrt{3}$,a+c=4,求b的值.

分析 (Ⅰ)由正弦定理化简已知可得$\sqrt{3}$sinBsinC+sinCcosB=2sinC,由sinC≠0,可得sin(B+$\frac{π}{6}$)=1,结合B的范围即可求得B的值.
(Ⅱ)由S=$\sqrt{3}$,解得ac=4,结合a+c=4,即可解得c,a的值,由余弦定理即可求b的值.

解答 解:(Ⅰ)∵$\sqrt{3}bsinC+ccosB=2c$.
∴由正弦定理可得:$\sqrt{3}$sinBsinC+sinCcosB=2sinC.
∴由C为三角形内角,sinC≠0,可得:$\sqrt{3}$sinB+cosB=2,既有:2sin(B+$\frac{π}{6}$)=2,
∴.B+$\frac{π}{6}$=2kπ$+\frac{π}{2}$,k∈Z,
∴由0<B<π,可解得:B=$\frac{π}{3}$.
(Ⅱ)∵由(Ⅰ)可得B=$\frac{π}{3}$.
∵S=$\frac{1}{2}acsinB$=$\frac{1}{2}×ac×\frac{\sqrt{3}}{2}=\sqrt{3}$,解得ac=4,①
又∵a+c=4,②a=4-c,代入①可解得:c=2,a=2,
∴由余弦定理可得:b2=a2+c2-2accosB=4+4-4=4,可解得:b=2.

点评 本题主要考查了正弦定理,余弦定理,三角形面积公式的综合应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|y=log2x},B={x∈Z||x|<3},则A∩B=(  )
A.(0,3)B.(-3,+∞)C.{1}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.数列{an}的前n项和记为Sn,对任意的正整数n,均有4Sn=(an+1)2,且an>0.
(1)求a1及{an}的通项公式;
(2)令b${\;}_{n}=(-1)^{n-1}\frac{4n}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=2cos(ωx+$\frac{π}{3}$)(ω>0)的最小正周期为2π.
(1)求ω的值;
(2)记△ABC内角A、B、C的对边分别为a,b,c,若f(A-$\frac{π}{3}$)=1,且a=$\frac{\sqrt{3}}{2}$b,求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=(1-ax)ln(x+1)-bx,其中a和b是实数,曲线y=f(x)恒与x轴相切于坐标原点
(1)求常数b的值
(2)当0≤x≤1时,关于x的不等式f(x)≥0恒成立,求实数a的取值范围
(3)求证:对于任意的正整数n,不等式(1+$\frac{1}{n}$)n$<e<(1+\frac{1}{n})^{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(3,m).若向量$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为3,则实数m=(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.0D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数$f(x)={x^2}+{x^{\frac{2}{3}}}$-4的零点m∈(a,a+1),a为整数,则所以满足条件a的值为a=1或a=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,若AC=5,∠A=120°,三角形的面积$\frac{15\sqrt{3}}{4}$,则BC的长度为7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.汽车以速度v做匀速直线运动,经过时间t所行驶的路程s=vt,如果汽车做变速直线运动,在时刻t的速度为v(t)=-t2+2(单位:km/h),那么它在0≤t≤1(单位:h)这段时间内行驶的路程s(单位:km)是多少?

查看答案和解析>>

同步练习册答案