精英家教网 > 高中数学 > 题目详情
4.设函数f(x)=2cos(ωx+$\frac{π}{3}$)(ω>0)的最小正周期为2π.
(1)求ω的值;
(2)记△ABC内角A、B、C的对边分别为a,b,c,若f(A-$\frac{π}{3}$)=1,且a=$\frac{\sqrt{3}}{2}$b,求sinB的值.

分析 (1)由条件利用y=Asin(ωx+)的周期等于 T=$\frac{2π}{ω}$,求得ω的值.
(2)由f(A-$\frac{π}{3}$)=1,求得A的值,再利用a=$\frac{\sqrt{3}}{2}$b以及正弦定理求得sinB的值.

解答 解:(1)∵函数f(x)=2cos(ωx+$\frac{π}{3}$)(ω>0)的最小正周期为2π,
∴$\frac{2π}{ω}$=2π,∴ω=1.
(2)∵f(A-$\frac{π}{3}$)=2cos(A-$\frac{π}{3}$+$\frac{π}{3}$)=1,∴cosA=$\frac{1}{2}$,A=$\frac{π}{3}$,∴sinA=$\frac{\sqrt{3}}{2}$.
∵$\frac{a}{sinA}$=$\frac{b}{sinB}$,a=$\frac{\sqrt{3}}{2}$b,∴$\frac{\frac{\sqrt{3}}{2}b}{\frac{\sqrt{3}}{2}}$=$\frac{b}{sinB}$,即 sinB=1.

点评 本题主要考查正弦定理和余弦定理的应用,y=Asin(ωx+)的周期等于 T=$\frac{2π}{ω}$,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知圆C:x2+y2-2x-2ay+a2-24=0(a∈R)的圆心在直线2x-y=0上.
(1)求实数a的值;
(2)求圆C与直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R)相交弦长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在复平面内,复数z与$\frac{5}{i-2}$的对应点关于虚轴对称,则z=(  )
A.2+iB.2-iC.-2+iD.-2-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.定义全集U的子集A的特征函数为fA(x)=$\left\{\begin{array}{l}{1,x∈A}\\{0,x∈{∁}_{U}A}\end{array}\right.$,这里∁UA表示集合A在全集U中的补集,已知A⊆U,B⊆U,给出以下结论:
①函数fA(x)的值域为{0,1};
②若A⊆B,则对于任意的x∈U,都有fA(x)≤fB(x);
③对于任意的x∈U,都有${f}_{{∁}_{U}A}$(x)=1-fA(x);
④对于任意的x∈U,都有fA∩B(x)=fA(x)•fB(x).
其中正确的结论有①②③④(写出全部正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(3,m).若向量$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为3,则实数m=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在锐角三角形ABC中,已知A>B>C,则cosB的取值范围为(  )
A.(0,$\frac{\sqrt{2}}{2}$)B.[$\frac{1}{2},\frac{\sqrt{2}}{2}$)C.(0,1)D.($\frac{\sqrt{2}}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,三个内角A、B、C所对的边分别为a,b,c,且$\sqrt{3}bsinC+ccosB=2c$.
(Ⅰ)求角B;
(Ⅱ)若△ABC的面积S=$\sqrt{3}$,a+c=4,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知n∈N*,在坐标平面中有斜率为n的直线ln与圆x2+y2=n2相切,且ln交y轴的正半轴于点Pn,交x轴于点Qn,则$\lim_{x→∞}\frac{{|{{P_n}{Q_n}}|}}{{2{n^2}}}$的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn=n2+$\frac{1}{3}$n,求这个数列的通项公式.

查看答案和解析>>

同步练习册答案