精英家教网 > 高中数学 > 题目详情
9.在锐角三角形ABC中,已知A>B>C,则cosB的取值范围为(  )
A.(0,$\frac{\sqrt{2}}{2}$)B.[$\frac{1}{2},\frac{\sqrt{2}}{2}$)C.(0,1)D.($\frac{\sqrt{2}}{2}$,1)

分析 在锐角三角形ABC中,A>B>C,A+B+C=π,可得$π<A+2B<\frac{π}{2}+2B$,于是$\frac{π}{2}$>$B>\frac{π}{4}$,即可得出.

解答 解:∵在锐角三角形ABC中,A>B>C,A+B+C=π,
∴$π<A+2B<\frac{π}{2}+2B$,∴$B>\frac{π}{4}$,
又$B<\frac{π}{2}$,
∴$\frac{π}{4}<B<\frac{π}{2}$,
∴$0<cosB<\frac{\sqrt{2}}{2}$.
故选:A.

点评 本题考查了锐角三角形内角和定理及其性质、余弦函数的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|x2-x-2<0},B={y|y=sinx,x∈R},则(  )
A.A⊆BB.B⊆AC.A∪B=[-1,2)D.A∩B=Φ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知 $sin(α+\frac{π}{6})-cosα=\frac{1}{3}$,则 $2sinαcos(α+\frac{π}{6})$=(  )
A.$-\frac{5}{18}$B.$\frac{5}{18}$C.$-\frac{7}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.将正整数1,2,3,…,n,…,排成数表如表所示,即第一行3个数,第二行6个数,且后一行比前一行多3个数,若第i行,第j列的数可用(i,j)表示,则2015可表示为(37,17).
第1列第2列第3列第4列第5列第6列第7列第8列
第1行123
第2行987654
第3行1011121314151617

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=2cos(ωx+$\frac{π}{3}$)(ω>0)的最小正周期为2π.
(1)求ω的值;
(2)记△ABC内角A、B、C的对边分别为a,b,c,若f(A-$\frac{π}{3}$)=1,且a=$\frac{\sqrt{3}}{2}$b,求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知某圆的圆心在直线y=2x上,且与x轴相切于点(1,0),则该圆的标准方程为(x-1)2+(y-2)2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(3,m).若向量$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为3,则实数m=(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.0D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.我们知道,以正三角形的三边中点为顶点的三角形与原三角形的面积之比为1:4,类比该命题得,以正四面体的四个面的中心为顶点的四面体与原四面体的体积之比为$\frac{1}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设数列{an}的前n项和为Sn,且Sn+1+Sn=(n+1)an+1-$\frac{1}{2}$an-1,n∈N*
(1)若数列{an}是等差数列,求数列{an}的通项公式
(2)设a2=6,求证:数列{an}是等差数列.

查看答案和解析>>

同步练习册答案