精英家教网 > 高中数学 > 题目详情

如图,所在平面互相垂直,且,E、F分别为AC、DC的中点.
(1)求证:
(2)求二面角的正弦值.

(1)详见解析;(2) .

解析试题分析:(1)(方法一)过E作EO⊥BC,垂足为O,连OF,由△ABC≌△DBC可证出△EOC≌△FOC,所以∠EOC=∠FOC=,即FO⊥BC,又EO⊥BC,因此BC⊥面EFO,即可证明EF⊥BC.(方法二)由题意,以B为坐标原点,在平面DBC内过B左垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线为z轴,建立如图所示的空间直角坐标系.

易得,所以,因此,从而得;(2) (方法一)在图1中,过O作OG⊥BF,垂足为G,连EG,由平面ABC⊥平面BDC,从而EO⊥平面BDC,从而EO⊥面BDC,又OG⊥BF,由三垂线定理知EG垂直BF,因此∠EGO为二面角E-BF-C的平面角;在△EOC中,EO=EC=BC·cos30°=,由△BGO∽△BFC知,,因此tan∠EGO=,从而sin∠EGO=,即可求出二面角E-BF-C的正弦值.
(方法二)在图2中,平面BFC的一个法向量为,设平面BEF的法向量,又,由 得其中一个,设二面角E-BF-C的大小为,且由题意知为锐角,则,因此sin∠EGO=,即可求出二面角E-BF-C的正弦值.
(1)证明:
(方法一)过E作EO⊥BC,垂足为O,连OF,

由△ABC≌△DBC可证出△EOC≌△FOC,所以∠EOC=∠FOC=,即FO⊥BC,
又EO⊥BC,因此BC⊥面EFO,
又EF面EFO,所以EF⊥BC.
(方法二)由题意,以B为坐标原点,在平面DBC内过B左垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线为z轴,建立如图所示的空间直角坐标系.

易得B(0,0,0),A(0,-1,),D(,-1,0),C(0,2,0),因而,所以,因此,从而,所以.
(2)(方法一)在图1中,过O作OG⊥BF,垂足为G,连EG,由平面ABC⊥平面BDC,从而EO⊥平面BDC,从而EO⊥面BDC,又OG⊥BF,由三垂线定理知EG垂直BF.
因此∠EGO为二面角E-BF-C的平面角;
在△EOC中,EO=EC=BC·cos30°=,由△BGO∽△BFC知,,因此tan∠EGO=,从而sin∠EGO=,即二面角E-BF-C的正弦值为.
(方法二)在图2中,平面BFC的一个法向量为,设平面BEF的法向量,又,由 得其中一个,设二面角E-BF-C的大小为,且由题意知为锐角,则,因此sin∠EGO=,即二面角E-BF-C的正弦值为.
考点:1.线面垂直的判定;2.二面角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

已知,且//(),则k=______.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知点,则点关于轴对称的点的坐标为               

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱柱中,底面.四边形为梯形,,且.过三点的平面记为的交点为.
(1)证明:的中点;
(2)求此四棱柱被平面所分成上下两部分的体积之比;
(3)若,梯形的面积为6,求平面与底面所成二面角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,平面平面,//,,
,且.
(1)求证:平面
(2)求和平面所成角的正弦值;
(3)在线段上是否存在一点使得平面平面,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在边长为的正方形中,点在线段上,且,作//,分别交于点,作//,分别交于点,将该正方形沿折叠,使得重合,构成如图所示的三棱柱
(1)求证:平面; 
(2)若点E为四边形BCQP内一动点,且二面角E-AP-Q的余弦值为,求|BE|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,平面,,且,点上.
(1)求证:
(2)若二面角的大小为,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,几何体中,为边长为的正方形,为直角梯形,

(1)求异面直线所成角的大小;
(2)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.

(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与平面ABA1夹角的正弦值.

查看答案和解析>>

同步练习册答案