精英家教网 > 高中数学 > 题目详情
11.已知点D为△ABC所在平面内一点.且$\overrightarrow{AD}$=3$\overrightarrow{AB}$+4$\overrightarrow{AC}$,若点E为直线BC上一点,且$\overrightarrow{ED}$=λ$\overrightarrow{AE}$,则λ的值为(  )
A.4B.5C.6D.7

分析 利用平面向量基本定理以及向量共线的关系分别得到$\overrightarrow{AD}$的两个表达式,根据定理得到对应向量系数相等,得到方程组解之.

解答 解:因为点E为直线BC上一点,所以设$\overrightarrow{BE}=x\overrightarrow{BC}$,且$\overrightarrow{ED}$=λ$\overrightarrow{AE}$,
所以$\overrightarrow{AD}=\overrightarrow{AE}+\overrightarrow{ED}=(1+λ)\overrightarrow{AE}$
=(1+λ)($\overrightarrow{AB}+x\overrightarrow{BC}$)
=(1+λ)$\overrightarrow{AB}$+(1+λ)x$\overrightarrow{BC}$
=(1+λ)(1-x)$\overrightarrow{AB}$+(1+λ)x$\overrightarrow{AC}$
=$3\overrightarrow{AB}+4\overrightarrow{AC}$,
由平面向量基本定理得到$\left\{\begin{array}{l}{(1+λ)(1-x)=3}\\{(1+λ)x=4}\end{array}\right.$,解得λ=6;
故选C.

点评 本题考查了向量共线定理、平面向量基本定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.当x>0时,不等式x2-mx+9>0恒成立,则实数m的取值范围是(  )
A.(-∞,6)B.(-∞,6]C.[6,+∞)D.(6,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知球O是某几何体的外接球,而该几何体是由一个侧棱长为2$\sqrt{5}$的正四棱锥S-ABCD与一个高为6的正四棱柱ABCD-A1B1C1D1拼接而成,则球O的表面积为(  )
A.$\frac{100π}{3}$B.64πC.100πD.$\frac{500π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在极坐标系中,曲线C1:ρ=2cosθ,曲线${C_2}:ρ{sin^2}θ=4cosθ$.以极点为坐标原点,极轴为x轴正半轴建立直角坐标系xOy,曲线C的参数方程为$\left\{{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t为参数).
(Ⅰ)求C1,C2的直角坐标方程;
(Ⅱ)C与C1,C2交于不同四点,这四点在C上的排列顺序为P,Q,R,S,求||PQ|-|RS||的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知曲线C1的参数方程为$\left\{\begin{array}{l}x=4+5cost\\ y=5+5sint\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设矩阵M=$[\begin{array}{l}{1}&{2}\\{x}&{y}\end{array}]$,N=$[\begin{array}{l}{2}&{4}\\{-1}&{-1}\end{array}]$,若MN=$[\begin{array}{l}{0}&{2}\\{5}&{13}\end{array}]$,求矩阵M的逆矩阵M-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,$∠ACB=\frac{π}{6},BC=\sqrt{3},AC=4$,则AB等于(  )
A.$\sqrt{7}$B.3C.$\sqrt{11}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.将圆x2+y2-2x=0向左平移一个单位长度,再把所得曲线上每一点的纵坐标保持不变,横坐标变为原来的$\sqrt{3}$倍得到曲线C.
(1)写出曲线C的参数方程;
(2)以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\frac{3\sqrt{2}}{2}$,若A,B分别为曲线C及直线l上的动点,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=5+lnx-\frac{kx}{x+1}$(k∈R).
(Ⅰ)求函数y=f(x)的单调区间;
(Ⅱ)若k∈N*,且当x∈(1,+∞)时,f(x)>0恒成立,求k的最大值.($ln(3+2\sqrt{2})≈1.76$)

查看答案和解析>>

同步练习册答案