| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
分析 利用平面向量基本定理以及向量共线的关系分别得到$\overrightarrow{AD}$的两个表达式,根据定理得到对应向量系数相等,得到方程组解之.
解答 解:因为点E为直线BC上一点,所以设$\overrightarrow{BE}=x\overrightarrow{BC}$,且$\overrightarrow{ED}$=λ$\overrightarrow{AE}$,
所以$\overrightarrow{AD}=\overrightarrow{AE}+\overrightarrow{ED}=(1+λ)\overrightarrow{AE}$
=(1+λ)($\overrightarrow{AB}+x\overrightarrow{BC}$)
=(1+λ)$\overrightarrow{AB}$+(1+λ)x$\overrightarrow{BC}$
=(1+λ)(1-x)$\overrightarrow{AB}$+(1+λ)x$\overrightarrow{AC}$
=$3\overrightarrow{AB}+4\overrightarrow{AC}$,
由平面向量基本定理得到$\left\{\begin{array}{l}{(1+λ)(1-x)=3}\\{(1+λ)x=4}\end{array}\right.$,解得λ=6;
故选C.
点评 本题考查了向量共线定理、平面向量基本定理,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{100π}{3}$ | B. | 64π | C. | 100π | D. | $\frac{500π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{7}$ | B. | 3 | C. | $\sqrt{11}$ | D. | $\sqrt{13}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com