精英家教网 > 高中数学 > 题目详情
1.当x>0时,不等式x2-mx+9>0恒成立,则实数m的取值范围是(  )
A.(-∞,6)B.(-∞,6]C.[6,+∞)D.(6,+∞)

分析 当x>0时,不等式x2-mx+9>0恒成立?m<(x+$\frac{9}{x}$)min,利用基本不等式可求得(x+$\frac{9}{x}$)min=6,从而可得实数m的取值范围.

解答 解:当x>0时,不等式x2-mx+9>0恒成立?当x>0时,不等式m<x+$\frac{9}{x}$恒成立?m<(x+$\frac{9}{x}$)min
当x>0时,x+$\frac{9}{x}$≥2$\sqrt{x•\frac{9}{x}}$=6(当且仅当x=3时取“=”),
因此(x+$\frac{9}{x}$)min=6,
所以m<6,
故选:A.

点评 本题考查函数恒成立问题,分离参数m是关键,考查等价转化思想与基本不等式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.如图,ABCD-A1B1C1D1是棱长为1的正方体,任作平面α与对角线AC1垂直,使得α与正方体的每个面都有公共点,这样得到的截面多边形的面积为S,周长为l的范围分别是[$\frac{\sqrt{3}}{2}$,$\frac{3\sqrt{3}}{4}$]、{3$\sqrt{2}$}(用集合表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(Ⅰ)求函数f(x)=$\frac{|3x+2|-|1-2x|}{|x+3|}$的最大值M.
(Ⅱ)是否存在满足a2+b2≤c≤M的实数a,b,c使得2(a+b+c)+1≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ex-mx2-2x
(1)若m=0,讨论f(x)的单调性;
(2)若$m<\frac{e}{2}-1$,证明:当x∈[0,+∞)时,$f(x)>\frac{e}{2}-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知${1^3}+{2^3}=(\frac{6}{2}{)^2},{1^3}+{2^3}+{3^3}=(\frac{12}{2}{)^2},{1^3}+{2^3}+{3^3}+{4^3}=(\frac{20}{2}{)^2},…$,若13+23+33+43+…+n3=3025,则n=(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知⊙O:x2+y2=1与x轴的两个交点为F1,F2,经过F1的光线经过直线l:y=$\frac{\sqrt{3}}{3}$(x+4)反射后经过F2,且经过F1的光线与l的交点为E,则以F1,F2为焦点,且经过点E的椭圆方程为$\frac{{x}^{2}}{\frac{19}{4}}$+$\frac{{y}^{2}}{\frac{15}{4}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.参数方程$\left\{\begin{array}{l}{x=t}\\{y=1+t}\end{array}\right.$(t为参数)表示曲线是(  )
A.一条射线B.两条射线C.一条直线D.两条直线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.曲线的参数方程为$\left\{{\begin{array}{l}{x=\sqrt{5}cosθ}\\{y=sinθ}\end{array},}\right.0≤θ<π$,则它的直角坐标方程为$\frac{{x}^{2}}{5}+{y}^{2}=1$,-$\sqrt{5}$<x≤$\sqrt{5}$,0≤y≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知点D为△ABC所在平面内一点.且$\overrightarrow{AD}$=3$\overrightarrow{AB}$+4$\overrightarrow{AC}$,若点E为直线BC上一点,且$\overrightarrow{ED}$=λ$\overrightarrow{AE}$,则λ的值为(  )
A.4B.5C.6D.7

查看答案和解析>>

同步练习册答案