分析 由θ的取值范围,求得x及y的取值范围,由椭圆的参数方程,即可求得直角坐标方程.
解答 解:由参数方程为$\left\{{\begin{array}{l}{x=\sqrt{5}cosθ}\\{y=sinθ}\end{array},}\right.0≤θ<π$,-$\sqrt{5}$<x≤$\sqrt{5}$,0≤y≤1
消去参数θ,则$\frac{{x}^{2}}{5}+{y}^{2}=1$,-$\sqrt{5}$<x≤$\sqrt{5}$,0≤y≤1,
故答案为:$\frac{{x}^{2}}{5}+{y}^{2}=1$,-$\sqrt{5}$<x≤$\sqrt{5}$,0≤y≤1.
点评 本题椭圆的参数方程,考查转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 8π | B. | 24π | C. | 48π | D. | 64π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{100π}{3}$ | B. | 64π | C. | 100π | D. | $\frac{500π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com