【题目】已知函数
满足:①定义为
;②
.
(1)求
的解析式;
(2)若
;均有
成立,求
的取值范围;
(3)设
,试求方程
的解.
【答案】(1)
(2)
(3)
,
、
,
、![]()
【解析】
(1)利用构造方程组法即可求得
的解析式;
(2)根据不等式,构造函数
与
.根据不等式恒成立可知满足
.求得![]()
.通过判断
的符号可判断
的单调性,由其单调性可得
,进而可知
为单调递增函数,即可求得
.再根据
及二次函数性质,可得
的取值范围;
(3)根据
的解析式,画出函数图像.并令
,则方程变为
.解得
的值.即可知
、
及
.结合函数图像及解析式,即可求得对应方程的解.
(1)
,…①
所以
即
…②
由①②联立解得:
.
(2)设
,
,
依题意知:当
时,![]()
![]()
又
在
上恒成立,
所以
在
上单调递减
![]()
在
上单调递增,
![]()
,
解得:
实数
的取值范围为
.
(3)
的图象如图所示:
![]()
令
,则![]()
![]()
当
时有1个解
,
当
时有2个解:
、
,
当
时有3个解:
、
.
故方程
的解分别为:
,
、
,
、![]()
科目:高中数学 来源: 题型:
【题目】在一个半圆中有两个互切的内切半圆,由三个半圆弧围成曲边三角形,作两个内切半圆的公切线把曲边三角形分隔成两块,阿基米德发现被分隔的这两块的内切圆是同样大小的,由于其形状很像皮匠用来切割皮料的刀子,他称此为“皮匠刀定理”,如图,若
,则阴影部分与最大半圆的面积比为( )
![]()
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA.规划要求:线段PB、QA上的所有点到点O的距离均不小于圆O的半径.已知点A、B到直线l的距离分别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).
![]()
(1)若道路PB与桥AB垂直,求道路PB的长;
(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;
(3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已如椭圆E:
(
)的离心率为
,点
在E上.
(1)求E的方程:
(2)斜率不为0的直线l经过点
,且与E交于P,Q两点,试问:是否存在定点C,使得
?若存在,求C的坐标:若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的个数为( )
①“
为真”是“
为真”的充分不必要条件;
②若数据
的平均数为1,则
的平均数为2;
③在区间
上随机取一个数
,则事件“
”发生的概率为![]()
④已知随机变量
服从正态分布
,且
,则
.
A.4B.3C.2D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校进行自主招生测试,报考学生有500人,其中男生300人,女生200人,为了研究学生的成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们测试的分数,然后按性别分为男、女两组,再将两组学生的分数分成4组:
,
,
,
分别加以统计,得到如图所示的频率分布直方图.
![]()
(Ⅰ)根据频率分布直方图可以估计女生测试成绩的平均值为103.5,请你估计男生测试成绩的平均值,由此推断男、女生测试成绩的平均水平的高低;
(Ⅱ)若规定分数不小于110分的学生为“优秀生”,请你根据已知条件完成
列联表,并判断是否有
的把握认为“优秀生与性别有关”?
优秀生 | 非优秀生 | 合计 | |
男生 | |||
女生 | |||
合计 |
参考公式:
,
.
参考数据:
P( | 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用
,化简,得
.设勾股形中勾股比为
,若向弦图内随机抛掷
颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆柱
底面半径为1,高为
,
是圆柱的一个轴截面,动点
从点
出发沿着圆柱的侧面到达点
,其距离最短时在侧面留下的曲线
如图所示.将轴截面
绕着轴
逆时针旋转
后,边
与曲线
相交于点
.
![]()
(1)求曲线
的长度;
(2)当
时,求点
到平面
的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com