精英家教网 > 高中数学 > 题目详情
9.已知向量$\overrightarrow{a}$=(0,4),$\overrightarrow{b}$=(2,2),则下列结论中正确的是(  )
A.$\overrightarrow{a}=\overrightarrow{b}$B.$\overrightarrow{a}⊥\overrightarrow{b}$C.($\overrightarrow{a}-\overrightarrow{b}$)$∥\overrightarrow{a}$D.$\overrightarrow{a}•\overrightarrow{b}$=8

分析 利用向量的坐标计算数量积进行判断.

解答 解:$\overrightarrow{a}•\overrightarrow{b}$=0×2+4×2=8.
故选D.

点评 本题考查了平面向量的数量积运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设随机变量ξ~B(2,p),η~B(4,p),若P(ξ≥1)=$\frac{5}{9}$,求E(2η+1),D(2η+1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为了增强消防安全意识,某中学对全体学生做了一次消防知识讲座,从男生中随机抽取50人,从女生中随机抽取70人参加消防知识测试,统计数据得到如下列联表:
 优秀非优秀总计
男生153550
女生304070
总计4575120
(Ⅰ)试判断是否有90%的把握认为消防知识的测试成绩优秀与否与性别有关;
附:
K2=$\frac{a(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.250.150.100.050.0250.010
k01.3232.0722.7063.8415.0246.635
(Ⅱ)为了宣传消防安全知识,从该校测试成绩获得优秀的同学中采用分层抽样的方法,随机选出6名组成宣传小组.现从这6人中随机抽取2名到校外宣传,求到校外宣传的同学中至少有1名是男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1-x}{{e}^{x}}$.
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求函数f(x)的零点和极值;
(3)若对任意x1,x2∈[a,+∞),都有f(x1)-f(x2)≥-$\frac{1}{{e}^{2}}$成立,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在书柜的某一层上原来共有5本不同的书,如果保持原有书的相对顺序不变,再插进去3本不同的书,那么共有336种不同的插入法.(用数字回答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知m≥1,当x∈R时,不等式m+cos2x<3+2sinx+$\sqrt{2m+1}$恒成立,则m的取值范围是[1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知四边形ABCD,O为任意一点,若$\overrightarrow{OA}$$+\overrightarrow{OC}$=$\overrightarrow{OB}$+$\overrightarrow{OD}$,那么四边形ABCD的形状是(  )
A.正方形B.平行四边形C.矩形D.菱形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知cosα=$\frac{1}{3}$,α∈(0,$\frac{π}{4}$),则$\frac{cos2α}{cos(\frac{π}{4}+α)}$=$\frac{4+\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F1作圆x2+y2=a2的切线,并延长交双曲线右支于点P,过右焦点F2作圆的切线交F1P于M,且M为F1P的中点,则双曲线的离心率e∈(  )
A.(1,$\sqrt{2}$)B.($\sqrt{2}$,$\sqrt{3}$)C.($\sqrt{3},2$)D.(2,$\sqrt{5}$)

查看答案和解析>>

同步练习册答案