精英家教网 > 高中数学 > 题目详情
16.下列命题正确的是(  )
A.三点可以确定一个平面
B.一条直线和一个点可以确定一个平面
C.四边形是平面图形
D.梯形确定一个平面

分析 通过特例判断的正误;特例判断B的正误;反例判断C的正误;平面性质判断D的正误;

解答 解:对于A,三点可以确定一个平面,当三点在一条直线时,不能确定一个平面,所以A不正确;
对于B,一条直线和一个点可以确定一个平面,当点在直线上时,不能确定一个平面,所以B不正确;
对于C,四边形是平面图形,空间四边形不是平面图形,所以C不正确;
对于D,梯形确定一个平面,因为梯形上下底平行,是平面图形,可以确定一个平面,所以D正确.
故选:D.

点评 本题考查平面的性质的应用,平面的判定,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知过点(1,1)的直线与圆x2+y2-4x-6y+4=0相交于A,B两点,则|AB|的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:
年级名次
是否近视
1~50951~1000
近视4132
不近视918
(1)根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(2)根据表中数据,在调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取2人,求成绩名次在1~50名恰有1名的学生的概率.
附:P(K2≥3.841=0.05)K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a,b是正数,x=$\frac{\sqrt{a}+\sqrt{b}}{\sqrt{2}}$,y=$\sqrt{a+b}$,则x,y的大小关系是(  )
A.x≥yB.x≤yC.x>yD.x<y

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.观察如图数表:

根据数表中所反映的规律,第n行与第n-1列的交叉点上的数应该是(  )
A.2n-1B.2n+1C.n2-1D.2n-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0.
(Ⅰ)求证:对m∈R,直线l与圆C总有两个不同交点;
(Ⅱ)设l与圆C交与不同两点A、B,求弦AB的中点M的轨迹方程;
(Ⅲ)若定点P(1,1)分弦AB为$\frac{AP}{PB}$=$\frac{1}{2}$,求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过抛物线y2=2px的焦点F作直线交抛物线于A、B两点,再过A、B分别作抛物线的切线l1,l2,设l1与l2的交点为P(x0,y0),则x0的值(  )
A.0B.-pC.-$\frac{p}{2}$D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a+b+c)(a-b+c)=3ac,且tanA+tanC=3+$\sqrt{3}$A<C,AB边上的高为4$\sqrt{3}$,求A,B,C的大小与边a,b,c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某个服装店经营某种服装,在某周内获纯利润y(元)与该周每天销售这种服装件数x之间的一组数据关系见下表:
x3456789
y66697381899091
已知:$\sum_{i=1}^{7}$${x}_{i}^{2}$=280,$\sum_{i=1}^{7}$xiyi=3 487.
(1)求$\overline{x}$,$\overline{y}$;
(2)画出散点图;
(3)求纯利润y与每天销售件数x之间的回归直线方程.

查看答案和解析>>

同步练习册答案