| A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{2+\sqrt{3}}{4}$ | C. | $\frac{1+\sqrt{3}}{4}$ | D. | $\frac{1+\sqrt{3}}{2}$ |
分析 利用诱导公式及两角差的余弦展开,降幂后利用辅助角公式化积,则答案可求.
解答 解:y=sin($\frac{π}{2}$+x)cos($\frac{π}{6}$-x)=cosx(cos$\frac{π}{6}cosx$+sin$\frac{π}{6}sinx$)
=$\frac{\sqrt{3}}{2}co{s}^{2}x$+$\frac{1}{2}sinxcosx$=$\frac{1}{4}sin2x+\frac{\sqrt{3}}{4}(1+cos2x)$
=$\frac{1}{2}(\frac{1}{2}sin2x+\frac{\sqrt{3}}{2}cos2x)+\frac{\sqrt{3}}{4}$=$\frac{1}{2}sin(2x+\frac{π}{6})+\frac{\sqrt{3}}{4}$.
∴${y}_{max}=\frac{2+\sqrt{3}}{4}$.
故选:B.
点评 本题考查三角函数的最值,考查了诱导公式、倍角公式及两角和的正弦,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | (a+c)4>(b+c)4 | B. | (a-b)c2>0 | C. | a+c≥b-c | D. | ${(a+c)^{\frac{1}{3}}}>{(b+c)^{\frac{1}{3}}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=-f(x)在R上是减函数 | B. | y=$\frac{1}{f(x)}$在R上是减函数 | ||
| C. | y=[f(x)]2在R上是增函数 | D. | y=af(x)(a为实数)在R上是增函数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com