精英家教网 > 高中数学 > 题目详情

在△ABC中,E,F分别为边AB,AC上的点,且数学公式,若数学公式,则m+n=________.


分析:在三角形ABC中,利用向量减法的三角形法则得,同样在三角形ABF中有,在三角形AEC中有,再结合条件=(m+n)+(n-m),再利用向量相等的概念,得到关于m,n的方程.即可求解.
解答:解:在三角形ABC中,

在三角形ABF中,∵
,?
在三角形AEC中,∵
=,?

=m()+n(),
=(m+n)+(n-m)
不共线,
,解得
则m+n=-
故答案为:
点评:本题考查了平面向量的基本定理及其意义,以及共线定理,同时考查了计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在△ABC中,E、F分别为AB、AC上的点,若
AE
AB
=m,
AF
AC
=n,则
S△AEF
S△ABC
=mn.拓展到空间:在三棱锥S-ABC中,D、E、F分别是侧棱SA、SB、SC上的点,若
SD
DA
=m,
SE
EB
=n,
SF
FC
=p,则
VS-DEF
VS-ABC
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,E,F分别为AB,AC中点,P为EF上任意一点,实数x,y满足
PA
+x
PB
+y
PC
=
0
,设△ABC,△PCA,△PAB的面积分别为S,S1S2
S1
S
=λ1
S2
S
=λ2,则λ1λ2
取得最大值时,2x+3y的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•钟祥市模拟)在△ABC中,E,F分别是AC,AB的中点,且3AB=2AC,若
BE
CF
<t
恒成立,则t的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,E,F分别为边AB,AC上的点,且
AE
=
EB
AF
=2
FC
,若
BC
=m
CE
+n
BF
,则m+n=
13
8
13
8

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,E,F分别为AB,AC的中点,P为EF上的任一点,实数x,y满足
PA
+
xPB
+y
PC
=
0
,设△ABC,△PBC,△PCA,△PAB的面积分别为S,S1,S2,S3,记
S1
S
=λ1
S2
S
=λ2
S3
S
=λ3
,则λ2•λ3取到最大值时,2x+y的值为(  )

查看答案和解析>>

同步练习册答案