精英家教网 > 高中数学 > 题目详情
5.若执行如图的程序框图,输出S的值为-2,则判断框中应填入的条件是(  )
A.k<2B.k<3C.k<4D.k<5

分析 根据程序框图,写出运行结果,根据程序输出的结果是S=-2,可得出判断框内应填入的条件.

解答 解:执行如图的程序框图,运行结果如下:
第1次循环S=log2$\frac{1}{2}$=-1,k=2;
第2次循环S=log2$\frac{1}{2}$+log2$\frac{2}{3}$=log2$\frac{1}{3}$,k=3;
第3次循环S=log2$\frac{1}{3}$+log2$\frac{3}{4}$=log2$\frac{1}{4}$=-2,k=4;
如果输出S=-2,那么只能进行3次循环,
故判断框内应填入的条件是k<4.
故选:C.

点评 本题考查程序框图,尤其考查循环结构,对循环体每次循环需要进行分析并找出内在规律,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知椭圆$C:\frac{x^2}{6}+\frac{y^2}{2}=1$,点A(3,0),P是椭圆C上的动点.
(I)若直线AP与椭圆C相切,求点P的坐标;
(II)若P在y轴的右侧,以AP为底边的等腰△ABP的顶点B在y轴上,求四边形OPAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.《孙子算经》是中国古代重要的数学著作,约成书于四、五世纪,也就是大约一千五百年前,传本的《孙子算经》共三卷.卷中有一问题:“今有方物一束,外周一匝有三十二枚,问积几何?”该著作中提出了一种解决此问题的方法:“重置二位,左位减八,余加右位,至尽虚加一,即得.”通过对该题的研究发现,若一束方物外周一匝的枚数n是8的整数倍时,均可采用此方法求解.如图,是解决这类问题的程序框图,若输入n=40,则输出的结果为121.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z=|1-i|i2017(其中i为虚数单位),则$\overline z$的虚部为(  )
A.-1B.-iC.$\sqrt{2}i$D.$-\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为了解人们对城市治安状况的满意度,某部门对城市部分居民的“安全感”进行调查,在调查过程中让每个居民客观地对自己目前生活城市的安全感进行评分,并把所得分作为“安全感指数”,即用区间[0,100]内的一个数来表示,该数越接近100表示安全感越高.现随机对该地区的男、女居民各500人进行了调查,调查数据如表所示:
安全感指数[0,20)[20,40)[40,60)[60,80)[80,100]
男居民人数816226131119
女居民人数1214174122178
根据表格,解答下面的问题:
(Ⅰ)估算该地区居民安全感指数的平均值;
(Ⅱ)如果居民安全感指数不小于60,则认为其安全感好.为了进一步了解居民的安全感,调查组又在该地区随机抽取3对夫妻进行调查,用X表示他们之中安全感好的夫妻(夫妻二人都感到安全)的对数,求X的分布列及期望(以样本的频率作为总体的概率).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知三棱锥P-ABC的各顶点都在同一球的面上,且PA⊥平面ABC,若球O的体积为$\frac{20\sqrt{5}π}{3}$(球的体积公式为$\frac{4π}{3}$R3,其中R为球的半径),AB=2,AC=1,∠BAC=60°,则三棱锥P-ABC的体积为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\sqrt{3}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ex($\frac{1}{3}$x3-2x2+(a+4)x-2a-4),其中a∈R,e为自然对数的底数.
(1)关于x的不等式f(x)<-$\frac{4}{3}$ex在(-∞,2)上恒成立,求a的取值范围;
(2)讨论函数f(x)极值点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示的几何体ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥
AB,M是EC上的点(不与端点重合),F为DA上的点,N为BE的中点.
(Ⅰ)若M是EC的中点,AF=3FD,求证:FN∥平面MBD;
(Ⅱ)若平面MBD与平面ABD所成角(锐角)的余弦值为$\frac{1}{3}$,试确定点M在EC上的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{m}$=($\sqrt{3}$cosωx,cosωx),$\overrightarrow{n}$=(sinωx,cosωx)(ω>0),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$的最小正周期为π.
(Ⅰ)求ω的值及函数f(x)的单调递增区间;
(Ⅱ)在钝角△ABC中,角A,B,C所对的边分别为a,b,c,已知a=1,b=$\sqrt{3}$,当f(A)取得最大值时,求边c.

查看答案和解析>>

同步练习册答案