精英家教网 > 高中数学 > 题目详情
13.已知复数z=|1-i|i2017(其中i为虚数单位),则$\overline z$的虚部为(  )
A.-1B.-iC.$\sqrt{2}i$D.$-\sqrt{2}$

分析 利用复数的周期性、模的计算公式、虚部的定义即可得出.

解答 解:∵i4=1,∴i2017=(i4504•i=i.
∴z=|1-i|i2017=$\sqrt{2}$i.
∴$\overline{z}$=-$\sqrt{2}$i的虚部为-$\sqrt{2}$.
故选:D.

点评 本题考查了复数的周期性、模的计算公式、虚部的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设T?R,若存在常数M>0,使得对任意t∈T,均有|t|≤M,则称T为有界集合,同时称M为集合T的上界.
(1)设A1={y|y=$\frac{{2}^{x}-1}{{2}^{x}+1}$,x∈R},A2={x|sinx>$\frac{1}{2}$},试判断A1、A2是否为有界集合,并说明理由;
(2)已知f(x)=x2+u,记f1(x)=f(x),fn(x)=f(fn-1(x))(n=2,3,…),若m∈R,u∈[$\frac{1}{4}$,+∞),且B={fn(m)|n∈N*}为有界集合,求u的值及m的取值范围;
(3)设a,b,c均为正数,将(a-b)2、(b-c)2、(c-a)2中的最小值记为d,是否存在正数λ∈(0,1),使得λ为有界集合C={y|$\frac{d}{{a}^{2}+{b}^{2}+{c}^{2}}$,a、b、c均为正数}的上界,若存在,试求λ的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且(c+b)(sinC-sinB)=a(sinA-sinB).若c=2$\sqrt{3}$,则a2+b2的取值范围是(20,24].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=xlnx-mx的图象与直线y=-1相切.
(Ⅰ)求m的值,并求f(x)的单调区间;
(Ⅱ)若g(x)=ax3,设h(x)=f(x)-g(x),讨论函数h(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足a1=-2,an+1=2an+4.
( I)求证{an+4}是等比数列,并求数列{an}的通项公式;
( II)求数列{an}的前n项的和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$一条渐近线与x轴的夹角为30°,那么双曲线的离心率为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若执行如图的程序框图,输出S的值为-2,则判断框中应填入的条件是(  )
A.k<2B.k<3C.k<4D.k<5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,且过点M(4,1).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:y=x+m(m≠-3)与椭圆C交于P,Q两点,记直线MP,MQ的斜率分别为k1,k2,试探究k1+k2是否为定值.若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=xex
(Ⅰ)讨论函数g(x)=af(x)+ex的单调性;
(Ⅱ)若直线y=x+2与曲线y=f(x)的交点的横坐标为t,且t∈[m,m+1],求整数m所有可能的值.

查看答案和解析>>

同步练习册答案