精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=ex($\frac{1}{3}$x3-2x2+(a+4)x-2a-4),其中a∈R,e为自然对数的底数.
(1)关于x的不等式f(x)<-$\frac{4}{3}$ex在(-∞,2)上恒成立,求a的取值范围;
(2)讨论函数f(x)极值点的个数.

分析 (1)原不等式转化为所以a>-$\frac{1}{3}$(x-2)2,根据函数的单调性即可求出a的范围,
(2)先求导,再构造函数,进行分类讨论,利用导数和函数的极值的关系即可判断.

解答 解:(1)由f(x)<-$\frac{4}{3}$ex,得ex($\frac{1}{3}$x3-2x2+(a+4)x-2a-4)<-$\frac{4}{3}$ex
即x3-6x2+(3a+12)x-6a-8<0对任意x∈(-∞,2)恒成立,
即(6-3x)a>x3-6x2+12x-8对任意x∈(-∞,2)恒成立,
因为x<2,所以a>$\frac{{x}^{3}-6{x}^{2}-8}{-3(x-2)}$=-$\frac{1}{3}$(x-2)2
记g(x)=-$\frac{1}{3}$(x-2)2,因为g(x)在(-∞,2)上单调递增,且g(2)=0,
所以a≥0,即a的取值范围为[0,+∞);
(2)由题意,可得f′(x)=ex($\frac{1}{3}$x3-x2+ax-a),可知f(x)只有一个极值点或有三个极值点.
令g(x)=$\frac{1}{3}$x3-x2+ax-a,
①若f(x)有且仅有一个极值点,则函数g(x)的图象必穿过x轴且只穿过一次,即g(x)为单调递增函数或者g(x)极值同号.
(ⅰ)当g(x)为单调递增函数时,g′(x)=x2-2x+a≥0在R上恒成立,得a≥1.
(ⅱ)当g(x)极值同号时,设x1,x2为极值点,则g(x1)•g(x2)≥0,
由g′(x)=x2-2x+a=0有解,得a<1,且x12-2x1+a=0,x22-2x2+a=0,
所以x1+x2=2,x1x2=a,
所以g(x1)=$\frac{1}{3}$x13-2x12-2+ax1-a=$\frac{1}{3}$x1(2x1-a)-$\frac{1}{3}$x1+ax1-a
=-$\frac{1}{3}$(2x1-a)-$\frac{1}{3}$ax1+ax1-a=$\frac{2}{3}$[(a-1)x1-a],
同理,g(x2)=$\frac{2}{3}$[(a-1)x2-a],
所以g(x1)g(x2)=$\frac{2}{3}$[(a-1)x1-a]•$\frac{2}{3}$[(a-1)x2-a]≥0,
化简得(a-1)2x1x2-a(a-1)(x1+x2)+a2≥0,
所以(a-1)2a-2a(a-1)+a2≥0,即a≥0,
所以0≤a<1.
所以,当a≥0时,f(x)有且仅有一个极值点;
②若f(x)有三个极值点,则函数g(x)的图象必穿过x轴且穿过三次,同理可得a<0.
综上,当a≥0时,f(x)有且仅有一个极值点,当a<0时,f(x)有三个极值点.

点评 本题考查了函数的单调性、极值问题,考查导数的应用以及转化思想,考查分析解决文问题的能力,属于难题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知平面α⊥平面β,直线m,n均不在平面α、β内,且m⊥n,则(  )
A.若m⊥β,则n∥βB.若n∥β,则m⊥βC.若m⊥β,则n⊥βD.若n⊥β,则m⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足a1=-2,an+1=2an+4.
( I)求证{an+4}是等比数列,并求数列{an}的通项公式;
( II)求数列{an}的前n项的和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若执行如图的程序框图,输出S的值为-2,则判断框中应填入的条件是(  )
A.k<2B.k<3C.k<4D.k<5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图1,在直角梯形ABCD中,AB∥DC,∠BAD=90°,AB=AD=$\frac{1}{2}$CD=1,如图2,将△ABD沿BD折起来,使平面ABD⊥平面BCD,设E为AD的中点,F为AC上一点,O为BD的中点.
(Ⅰ)求证:AO⊥平面BCD;、
(Ⅱ)若三棱锥A-BEF的体积为$\frac{\sqrt{2}}{18}$,求二面角A-BE-F的余弦值的绝对值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,且过点M(4,1).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:y=x+m(m≠-3)与椭圆C交于P,Q两点,记直线MP,MQ的斜率分别为k1,k2,试探究k1+k2是否为定值.若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|y=log2(3-x)},B={x||2x-1|>1},则A∩B=(  )
A.{x|1<x<3}B.{x|-1<x<3}C.{x|x<0或0<x<3}D.{x|x<0或1<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)=|xex|,又g(x)=[f(x)]2-tf(x)(t∈R),若方程g(x)=-2有4个不同的根,则t的取值范围为(  )
A.$({-∞,-\frac{1}{e}-2e})$B.$({-∞,\frac{1}{e}-e})$C.$({\frac{1}{e}+2e,+∞})$D.$({\frac{1}{e}+e,+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.执行如图所示的程序框图,则输出i的值为(  )
A.1006B.1007C.1008D.1009

查看答案和解析>>

同步练习册答案