精英家教网 > 高中数学 > 题目详情
7.已知平面α⊥平面β,直线m,n均不在平面α、β内,且m⊥n,则(  )
A.若m⊥β,则n∥βB.若n∥β,则m⊥βC.若m⊥β,则n⊥βD.若n⊥β,则m⊥β

分析 根据空间线面位置关系的定义及判定定理或结合图形,给出反例进行判断.

解答 解:对于A,若m⊥β,m⊥n,则n∥β或n?β,
又直线m,n均不在平面α、β内,∴n∥β,故A正确,C错误;
对于B,若n∥β,则β内存在无数条平行直线l,使得l∥n,
∵m⊥n,∴l⊥m,根据线面垂直的定义可知m与β不一定垂直,故B错误;
对于D,若n⊥β,m⊥β,则m∥n,与条件m⊥n矛盾,故D错误.
故选A.

点评 本题考查了空间线面位置关系的判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.函数f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$)的图象向左平移$\frac{π}{6}$个单位后关于y轴对称,则f(x)在[0,$\frac{π}{2}$]上的单调递增区间为[$\frac{5π}{12}$,$\frac{π}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在多面体ABCDEF中,平面BDEF⊥平面ABCD,四边形ABCD是菱形,四边形BDEF是矩形,BD=2BF,H是CF的中点.
(1)求证:AF∥平面BDH;
(2)求证:平面ACE⊥平面ACF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆$C:\frac{x^2}{6}+\frac{y^2}{2}=1$,点A(3,0),P是椭圆C上的动点.
(I)若直线AP与椭圆C相切,求点P的坐标;
(II)若P在y轴的右侧,以AP为底边的等腰△ABP的顶点B在y轴上,求四边形OPAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|(x-6)(x+2)<0},B={x|x-1>0},则A∩B等于(  )
A.(1,6)B.(-1,6)C.(-2,1)D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,半径为5cm的圆形纸板内有一个相同圆心的半径为1cm的小圆,现将半径为1cm的一枚硬币抛到此纸板上,使整块硬币完全随机落在纸板内,则硬币与小圆无公共点的概率为(  )
A.$\frac{1}{2}$B.$\frac{21}{25}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设i为虚数单位,则复数$z=\frac{1-i}{1+i}$的模为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.《孙子算经》是中国古代重要的数学著作,约成书于四、五世纪,也就是大约一千五百年前,传本的《孙子算经》共三卷.卷中有一问题:“今有方物一束,外周一匝有三十二枚,问积几何?”该著作中提出了一种解决此问题的方法:“重置二位,左位减八,余加右位,至尽虚加一,即得.”通过对该题的研究发现,若一束方物外周一匝的枚数n是8的整数倍时,均可采用此方法求解.如图,是解决这类问题的程序框图,若输入n=40,则输出的结果为121.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ex($\frac{1}{3}$x3-2x2+(a+4)x-2a-4),其中a∈R,e为自然对数的底数.
(1)关于x的不等式f(x)<-$\frac{4}{3}$ex在(-∞,2)上恒成立,求a的取值范围;
(2)讨论函数f(x)极值点的个数.

查看答案和解析>>

同步练习册答案