精英家教网 > 高中数学 > 题目详情
12.如图,半径为5cm的圆形纸板内有一个相同圆心的半径为1cm的小圆,现将半径为1cm的一枚硬币抛到此纸板上,使整块硬币完全随机落在纸板内,则硬币与小圆无公共点的概率为(  )
A.$\frac{1}{2}$B.$\frac{21}{25}$C.$\frac{1}{4}$D.$\frac{3}{4}$

分析 由题意可得,硬币要落在纸板内,硬币圆心距离纸板圆心的距离应该小于4,硬币与小圆无公共点,硬币圆心距离小圆圆心要大于2,先求出硬币落在纸板上的面积,然后再求解硬币落下后与小圆没交点的区域的面积,代入古典概率的计算方式可求.

解答 解:记“硬币落下后与小圆无公共点”为事件A,
硬币要落在纸板内,硬币圆心距离纸板圆心的距离应该小于4,其面积为16π,
无公共点也就意味着,硬币的圆心与纸板的圆心相距超过2cm,以纸板的圆心为圆心,作一个半径2cm的圆,
硬币的圆心在此圆外面,则硬币与半径为1cm的小圆无公共交点.
所以有公共点的概率为$\frac{4}{16}$,
无公共点的概率为P(A)=1-$\frac{4}{16}$=$\frac{3}{4}$,
故选:D.

点评 本题主要考查了几何概率的计算公式,用到的知识点为:概率=相应的面积与总面积之比.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设△ABC的内角A,B,C的对边分别为a,b,c,若cosA=$\frac{3}{5}$,sinB=$\frac{{\sqrt{2}}}{2}$,a=8,则c=7$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设T?R,若存在常数M>0,使得对任意t∈T,均有|t|≤M,则称T为有界集合,同时称M为集合T的上界.
(1)设A1={y|y=$\frac{{2}^{x}-1}{{2}^{x}+1}$,x∈R},A2={x|sinx>$\frac{1}{2}$},试判断A1、A2是否为有界集合,并说明理由;
(2)已知f(x)=x2+u,记f1(x)=f(x),fn(x)=f(fn-1(x))(n=2,3,…),若m∈R,u∈[$\frac{1}{4}$,+∞),且B={fn(m)|n∈N*}为有界集合,求u的值及m的取值范围;
(3)设a,b,c均为正数,将(a-b)2、(b-c)2、(c-a)2中的最小值记为d,是否存在正数λ∈(0,1),使得λ为有界集合C={y|$\frac{d}{{a}^{2}+{b}^{2}+{c}^{2}}$,a、b、c均为正数}的上界,若存在,试求λ的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax2+(1-2a)x-lnx(a∈R).
(1)求函数f(x)在区间[1,2]上的最大值;
(2)若A(x1,y1),B(x2,y2),C(x0,y0)是函数f(x)图象上不同的三点,且x0=$\frac{{{x_1}+{x_2}}}{2}$,试判断f′(x0)与$\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}$之间的大小关系,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知平面α⊥平面β,直线m,n均不在平面α、β内,且m⊥n,则(  )
A.若m⊥β,则n∥βB.若n∥β,则m⊥βC.若m⊥β,则n⊥βD.若n⊥β,则m⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2+$\frac{2}{x}$+alnx(x>0,a为常数).
(1)讨论函数g(x)=f(x)-x2的单调性;
(2)对任意两个不相等的正数x1、x2,求证:当a≤0时,$\frac{{f({x_1})+f({x_2})}}{2}>f({\frac{{{x_1}+{x_2}}}{2}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且(c+b)(sinC-sinB)=a(sinA-sinB).若c=2$\sqrt{3}$,则a2+b2的取值范围是(20,24].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=xlnx-mx的图象与直线y=-1相切.
(Ⅰ)求m的值,并求f(x)的单调区间;
(Ⅱ)若g(x)=ax3,设h(x)=f(x)-g(x),讨论函数h(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,且过点M(4,1).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:y=x+m(m≠-3)与椭圆C交于P,Q两点,记直线MP,MQ的斜率分别为k1,k2,试探究k1+k2是否为定值.若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案