精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=x2+$\frac{2}{x}$+alnx(x>0,a为常数).
(1)讨论函数g(x)=f(x)-x2的单调性;
(2)对任意两个不相等的正数x1、x2,求证:当a≤0时,$\frac{{f({x_1})+f({x_2})}}{2}>f({\frac{{{x_1}+{x_2}}}{2}})$.

分析 (1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;
(2)构造$t(x)=\frac{{f(x)+f({x_2})}}{2}-f({\frac{{x+{x_2}}}{2}}),x∈(0,+∞)$,求出t(x)的导数,解关于导函数的不等式,得到函数的单调区间,根据函数的单调性证明即可.

解答 解:(1)$g(x)=f(x)-{x^2}=\frac{2}{x}+alnx$,∴$g'(x)=-\frac{2}{x^2}+\frac{a}{x}=\frac{ax-2}{x^2}(x>0)$.
①当a≤0时,g'(x)<0,g(x)在(0,+∞)为减函数;
②当a>0时,$g'(x)=\frac{{a(x-\frac{2}{a})}}{x^2}$,
当$0<x<\frac{2}{a}$时,g'(x)<0,g(x)为减函数;
当$x>\frac{2}{a}$时,g'(x)>0,g(x)为增函数.
∴当a>0时,g(x)在$(0,\frac{2}{a})$上为减函数,g(x)在$(\frac{2}{a},+∞)$上为增函数.
(2)证明:以x1为自变量,构造$t(x)=\frac{{f(x)+f({x_2})}}{2}-f({\frac{{x+{x_2}}}{2}}),x∈(0,+∞)$.
∴$t'(x)=\frac{1}{2}f'(x)-\frac{1}{2}\frac{{f(x+{x_2})}}{2}$,又$f'(x)=2x-\frac{2}{x^2}+\frac{a}{x}$,
$t'(x)=x-\frac{1}{x^2}+\frac{a}{2x}-\frac{1}{2}[(x+{x_2})-\frac{8}{{{{(x+{x_2})}^2}}}+\frac{2a}{{x+{x_2}}}]$=$(x-{x_2})[\frac{1}{2}+\frac{{3x+{x_2}}}{{{x^2}{{(x+{x_2})}^2}}}-\frac{a}{{2x(x+{x_2})}}]$,
∵$\frac{1}{2}>0,\frac{{3x+{x_2}}}{{{x^2}{{(x+{x_2})}^2}}}>0,-\frac{a}{{2x(x+{x_2})}}>0$,∴$\frac{1}{2}+\frac{{3x+{x_2}}}{{{x^2}{{(x+{x_2})}^2}}}-\frac{a}{{2x(x+{x_2})}}>0$.
故当x∈(0,x2)时,t'(x)<0,t(x)为减函数;
当x∈(x2,+∞)时,t'(x)>0,t(x)为增函数.
故对一切x∈(0,+∞),t(x)≥t(x2)=0.当且仅当x=x2时取等号.
题中x1≠x2,故t(x1)>0恒成立.得证.

点评 本题考查了函数的单调性问题,考查导数的应用以及分类讨论思想,转化思想,考查不等式的证明,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知公差不为零的等差数列{an}的前n项和为Sn,若S10=110,且a1,a2,a4成等比数列
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足${b_n}=\frac{1}{{({{a_n}-1})({{a_n}+1})}}$,若数列{bn}前n项和Tn,证明${T_n}<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=cos(2x-$\frac{π}{6}$)+sin2x,则f(x)的一个单调递减区间是(  )
A.[-$\frac{π}{3}$,$\frac{π}{6}$]B.[-$\frac{π}{3}$,$\frac{2π}{3}$]C.[-$\frac{π}{6}$,$\frac{5π}{6}$]D.[$\frac{π}{6}$,$\frac{2π}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四棱锥P-ABCD中,AD∥BC,AD⊥DC,AD=2BC=2,在侧面PAD中,PA=PD,E为侧棱PC上不同于端点的任意一点且PA⊥DE.
(1)证明:平面PAD⊥平面ABCD;
(2)若PA∥平面BDE,求$\frac{CE}{PE}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,半径为5cm的圆形纸板内有一个相同圆心的半径为1cm的小圆,现将半径为1cm的一枚硬币抛到此纸板上,使整块硬币完全随机落在纸板内,则硬币与小圆无公共点的概率为(  )
A.$\frac{1}{2}$B.$\frac{21}{25}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.《九章算术》“勾股”章有一题:“今有二人同立.甲行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会,问甲乙各行几何?”大意是说:“已知甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为3,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.甲、乙各走了多少步?”请问乙走的步数是(  )
A.$\frac{9}{2}$B.$\frac{15}{2}$C.$\frac{21}{2}$D.$\frac{49}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.执行所给的程序框图,则输出的值是(  )
A.$\frac{1}{55}$B.$\frac{1}{58}$C.$\frac{1}{61}$D.$\frac{1}{64}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知向量$\overrightarrow{a}$=(k,k+1),$\overrightarrow{b}$=(1,-2)且$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数k等于$-\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.阅读程序框图,该算法的功能是输出(  )
A.数列{2n-1}的前 4项的和B.数列{2n-1}的第4项
C.数列{2n}的前5项的和D.数列?{2n-1}的第5项

查看答案和解析>>

同步练习册答案