精英家教网 > 高中数学 > 题目详情
9.执行所给的程序框图,则输出的值是(  )
A.$\frac{1}{55}$B.$\frac{1}{58}$C.$\frac{1}{61}$D.$\frac{1}{64}$

分析 根据所给数值判定是否满足判断框中的条件,然后执行循环语句,一旦满足条件就退出循环,输出结果.

解答 解:模拟执行程序,可得:
A=1,i=1,
第1次执行循环体,A=$\frac{1}{4}$,i=2
满足条件i≤20,第2次执行循环体,A=$\frac{1}{7}$,i=3,
满足条件i≤20,第3次执行循环体,A=$\frac{1}{10}$,i=4,
满足条件i≤20,第4次执行循环体,A=$\frac{1}{13}$,i=5,
满足条件i≤20,第5次执行循环体,A=$\frac{1}{16}$,i=6,

观察规律可知,当i=20时,满足条件i≤20,第20次执行循环体,A=$\frac{1}{4+(20-1)×3}$=$\frac{1}{61}$,i=21,
此时,不满足条件i≤20,退出循环,输出A的值为$\frac{1}{61}$.
故选:C.

点评 本题给出程序框图,要我们求出最后输出值,着重考查了算法语句的理解和循环结构等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知变量x与y负相关,且由观测数据算得样本平均数$\overline x=2$,$\overline y=1.5$,则由该观测数据算得的线性回归方程可能是(  )
A.y=0.6x+1.1B.y=3x-4.5C.y=-2x+5.5D.y=-0.4x+3.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax2+(1-2a)x-lnx(a∈R).
(1)求函数f(x)在区间[1,2]上的最大值;
(2)若A(x1,y1),B(x2,y2),C(x0,y0)是函数f(x)图象上不同的三点,且x0=$\frac{{{x_1}+{x_2}}}{2}$,试判断f′(x0)与$\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}$之间的大小关系,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2+$\frac{2}{x}$+alnx(x>0,a为常数).
(1)讨论函数g(x)=f(x)-x2的单调性;
(2)对任意两个不相等的正数x1、x2,求证:当a≤0时,$\frac{{f({x_1})+f({x_2})}}{2}>f({\frac{{{x_1}+{x_2}}}{2}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且(c+b)(sinC-sinB)=a(sinA-sinB).若c=2$\sqrt{3}$,则a2+b2的取值范围是(20,24].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设{an}是公差不为0的等差数列,满足a42+a52=a62+a72,则{an}的前10项和S10=(  )
A.-10B.-5C.0D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=xlnx-mx的图象与直线y=-1相切.
(Ⅰ)求m的值,并求f(x)的单调区间;
(Ⅱ)若g(x)=ax3,设h(x)=f(x)-g(x),讨论函数h(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$一条渐近线与x轴的夹角为30°,那么双曲线的离心率为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等比数列{an}满足an+1+an=9•2n-1,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=(n-1)an,数列{bn}的前n项和为Sn,若不等式Sn>kan+16n-26对一切n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案