精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=cos(2x-$\frac{π}{6}$)+sin2x,则f(x)的一个单调递减区间是(  )
A.[-$\frac{π}{3}$,$\frac{π}{6}$]B.[-$\frac{π}{3}$,$\frac{2π}{3}$]C.[-$\frac{π}{6}$,$\frac{5π}{6}$]D.[$\frac{π}{6}$,$\frac{2π}{3}$]

分析 利用两角和与差以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,将内层函数看作整体,放到正弦函数的减区间上,解不等式得函数的单调递减区间;可得答案.

解答 解:函数f(x)=cos(2x-$\frac{π}{6}$)+sin2x,
化简可得:f(x)=$\frac{\sqrt{3}}{2}$cos2x+$\frac{1}{2}$sin2x+sin2x=$\sqrt{3}$sin(2x+$\frac{π}{6}$)
令$\frac{π}{2}≤$2x+$\frac{π}{6}$$≤\frac{3π}{2}$,
可得:$\frac{π}{6}$≤x≤$\frac{2π}{3}$,
∴f(x)的一个单调递减区间是[$\frac{π}{6}$,$\frac{2π}{3}$].
故选D

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.某学校食堂在高一年级学生中抽查了100名学生进行饮食习惯调查,结果如表:
喜欢吃辣不喜欢吃辣合计
男生301040
女生253560
合计5545100
(I)从这100人中随机抽取1人,求抽到喜欢吃辣的学生概率;
(II)试判断有多大把握认为喜欢吃辣与性别有关;
(III)已知在被调查的学生中有5人来自一班,其中有2人喜欢吃辣,从这5人中随机抽取3人,求其中恰有1人喜欢吃辣的概率.
下面临界值表仅供参考:
P(K2≥k00.15100.0.050.0250.0100.0050.001
k02.0722.7068411.5.0246.6357.87910.828
$({参考公式:{K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}},其中n=a+b+c+d})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知变量x与y负相关,且由观测数据算得样本平均数$\overline x=2$,$\overline y=1.5$,则由该观测数据算得的线性回归方程可能是(  )
A.y=0.6x+1.1B.y=3x-4.5C.y=-2x+5.5D.y=-0.4x+3.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在学校体育节中,某班全体40名同学参加跳绳、踢毽子两项比赛的人数统计如下:
参加跳绳的同学未参加跳绳的同学
参加踢毽的同学94
未参加踢毽的同学720
(1)从该班随机选1名同学,求该同学至少参加上述一项活动的概率;
(2)已知既参加跳绳又参加踢毽的9名同学中,有男生5名,女生4名,现从这5名男生,4名女生中各随机挑选1人,求男同学甲未被选中且女同学乙被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设T?R,若存在常数M>0,使得对任意t∈T,均有|t|≤M,则称T为有界集合,同时称M为集合T的上界.
(1)设A1={y|y=$\frac{{2}^{x}-1}{{2}^{x}+1}$,x∈R},A2={x|sinx>$\frac{1}{2}$},试判断A1、A2是否为有界集合,并说明理由;
(2)已知f(x)=x2+u,记f1(x)=f(x),fn(x)=f(fn-1(x))(n=2,3,…),若m∈R,u∈[$\frac{1}{4}$,+∞),且B={fn(m)|n∈N*}为有界集合,求u的值及m的取值范围;
(3)设a,b,c均为正数,将(a-b)2、(b-c)2、(c-a)2中的最小值记为d,是否存在正数λ∈(0,1),使得λ为有界集合C={y|$\frac{d}{{a}^{2}+{b}^{2}+{c}^{2}}$,a、b、c均为正数}的上界,若存在,试求λ的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知平面向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$满足$|{\overrightarrow a}|=4$,$|{\overrightarrow b}|=3$,$|{\overrightarrow c}|=2$,$\overrightarrow b•\overrightarrow c=3$,则${(\overrightarrow a-\overrightarrow b)^2}{(\overrightarrow a-\overrightarrow c)^2}-{[(\overrightarrow a-\overrightarrow b)•(\overrightarrow a-\overrightarrow c)]^2}$最大值为(  )
A.$4\sqrt{3}+3\sqrt{7}$B.$4\sqrt{7}+3\sqrt{3}$C.${(4\sqrt{3}+3\sqrt{7})^2}$D.${(4\sqrt{7}+3\sqrt{3})^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax2+(1-2a)x-lnx(a∈R).
(1)求函数f(x)在区间[1,2]上的最大值;
(2)若A(x1,y1),B(x2,y2),C(x0,y0)是函数f(x)图象上不同的三点,且x0=$\frac{{{x_1}+{x_2}}}{2}$,试判断f′(x0)与$\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}$之间的大小关系,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2+$\frac{2}{x}$+alnx(x>0,a为常数).
(1)讨论函数g(x)=f(x)-x2的单调性;
(2)对任意两个不相等的正数x1、x2,求证:当a≤0时,$\frac{{f({x_1})+f({x_2})}}{2}>f({\frac{{{x_1}+{x_2}}}{2}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$一条渐近线与x轴的夹角为30°,那么双曲线的离心率为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案