20£®Ä³Ñ§Ð£Ê³ÌÃÔÚ¸ßÒ»Ä꼶ѧÉúÖгé²éÁË100ÃûѧÉú½øÐÐÒûʳϰ¹ßµ÷²é£¬½á¹ûÈç±í£º
ϲ»¶³ÔÀ±²»Ï²»¶³ÔÀ±ºÏ¼Æ
ÄÐÉú301040
Å®Éú253560
ºÏ¼Æ5545100
£¨I£©´ÓÕâ100ÈËÖÐËæ»ú³éÈ¡1ÈË£¬Çó³éµ½Ï²»¶³ÔÀ±µÄѧÉú¸ÅÂÊ£»
£¨II£©ÊÔÅжÏÓжà´ó°ÑÎÕÈÏΪϲ»¶³ÔÀ±ÓëÐÔ±ðÓйأ»
£¨III£©ÒÑÖªÔÚ±»µ÷²éµÄѧÉúÖÐÓÐ5ÈËÀ´×ÔÒ»°à£¬ÆäÖÐÓÐ2ÈËϲ»¶³ÔÀ±£¬´ÓÕâ5ÈËÖÐËæ»ú³éÈ¡3ÈË£¬ÇóÆäÖÐÇ¡ÓÐ1ÈËϲ»¶³ÔÀ±µÄ¸ÅÂÊ£®
ÏÂÃæÁÙ½çÖµ±í½ö¹©²Î¿¼£º
P£¨K2¡Ýk0£©0.15100£®0.050.0250.0100.0050.001
k02.0722.7068411£®5.0246.6357.87910.828
$£¨{²Î¿¼¹«Ê½£º{K^2}=\frac{{n{{£¨{ad-bc}£©}^2}}}{{£¨{a+b}£©£¨{c+d}£©£¨{a+c}£©£¨{b+d}£©}}£¬ÆäÖÐn=a+b+c+d}£©$£®

·ÖÎö £¨I£©Éè¡°³éµ½Ï²»¶³ÔÀ±µÄѧÉú¡±ÎªÊ¼þA£¬Çó³ö¸ÅÂÊÖµ¼´¿É£»
£¨II£©¸ù¾ÝÁÐÁª±íÖÐÊý¾Ý£¬¼ÆËãK2£¬¶ÔÕÕÁÙ½çÖµ¼´¿ÉµÃ³ö½áÂÛ£»
£¨III£©ÀûÓÃÁоٷ¨Çó³ö»ù±¾Ê¼þÊý£¬¼ÆËã¶ÔÓ¦µÄ¸ÅÂÊÖµ£®

½â´ð ½â£º£¨I£©Éè¡°³éµ½Ï²»¶³ÔÀ±µÄѧÉú¡±ÎªÊ¼þA£¬
ÔòP£¨A£©=$\frac{55}{100}$=0.55£»
£¨II£©¸ù¾ÝÁÐÁª±íÖÐÊý¾Ý£¬
¼ÆËãK2=$\frac{100{¡Á£¨30¡Á35-25¡Á10£©}^{2}}{40¡Á60¡Á55¡Á45}$=$\frac{3200}{297}$¡Ö10.77£¬
ÒòΪ10.77£¾7.879£¬ËùÒÔÓÐ99.5%µÄ°ÑÎÕÈÏΪϲ»¶³ÔÀ±ÓëÐÔ±ðÓйأ»
£¨III£©Éèϲ»¶³ÔÀ±µÄ2ÃûѧÉúΪA¡¢B£¬²»Ï²»¶³ÔÀ±µÄ3ÃûѧÉúΪc¡¢d¡¢e£¬
´ÓÕâ5ÈËÖÐËæ»ú³éÈ¡3ÈË£¬»ù±¾Ê¼þÊÇ
ABc¡¢ABd¡¢ABe¡¢Acd¡¢Ace¡¢Ade¡¢Bcd¡¢Bce¡¢Bde¡¢cde¹²10ÖÖ£»
ÆäÖÐÇ¡ÓÐ1ÈËϲ»¶³ÔÀ±µÄʼþÊÇ
Acd¡¢Ace¡¢Ade¡¢Bcd¡¢Bce¡¢Bde¹²6ÖÖ£»
¹ÊËùÇóµÄ¸ÅÂÊΪP=$\frac{6}{10}$=$\frac{3}{5}$£®

µãÆÀ ±¾Ì⿼²éÁ˶ÀÁ¢ÐÔ¼ìÑéÓëÁоٷ¨Çó¹Åµä¸ÅÐ͵ĸÅÂÊÎÊÌ⣬ÊÇ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑ֪ʵÊýx£¬yÂú×ã$\left\{\begin{array}{l}{2x-y-2¡Ý0}\\{x+y-1¡Ü0}\\{y+1¡Ý0}\end{array}\right.$£¬z=mx+yµÄ×î´óֵΪ3£¬ÔòʵÊýmµÄÖµÊÇ£¨¡¡¡¡£©
A£®-2B£®3C£®8D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÊµÊýx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{y-2x¡Ü0}\\{2x+y¡Ü6}\\{y¡Ý\frac{1}{2}}\end{array}\right.$£¬Ôò2x+$\frac{1}{y}$µÄ×îСֵΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖª$sin£¨{¦Á-\frac{¦Ð}{3}}£©=\frac{{\sqrt{3}}}{3}$£¬Ôòcos$£¨{2¦Á+\frac{¦Ð}{3}}£©$=£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$-\frac{1}{3}$C£®$-\frac{3}{7}$D£®$\frac{3}{7}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Éè{an}Êǵ¥µ÷µÝÔöµÄµÈ²îÊýÁУ¬SnΪÆäǰnÏîºÍ£¬ÇÒÂú×ã3S4=2S5£¬a5+2ÊÇa3£¬a12µÄµÈ±ÈÖÐÏ
£¨I£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨II£©ÈôÊýÁÐ{bn}Âú×ã$\frac{b_1}{a_1}+\frac{b_2}{a_2}+¡­+\frac{b_n}{a_n}={3^{n+1}}-3£¨{n¡Ê{N^*}}£©$£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÏÂÁÐ˵·¨ÕýÈ·µÄ¸öÊýΪ£¨¡¡¡¡£©
¢Ù¶ÔÓÚ²»ÖغϵÄÁ½ÌõÖ±Ïߣ¬¡°Á½ÌõÖ±ÏßµÄбÂÊÏàµÈ¡±ÊÇ¡°Á½ÌõÖ±Ï߯½ÐС±µÄ±ØÒª²»³ä·ÖÌõ¼þ£»
¢ÚÃüÌâ¡°?x¡ÊR£¬sinx¡Ü1¡±µÄ·ñ¶¨ÊÇ¡°?x0¡ÊR£¬sinx0£¾1¡±£»
¢Û¡°pÇÒqÎªÕæ¡±ÊÇ¡°p»òqÎªÕæ¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£»
¢ÜÒÑÖªÖ±Ïßa£¬bºÍÆ½Ãæ¦Á£¬Èôa¡Í¦Á£¬b¡Î¦Á£¬Ôòa¡Íb£®
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èô¸´ÊýzÂú×ãiz=1+i£¬ÔòzµÄ¹²éÊý$\overline{z}$ÔÚ¸´Æ½ÃæÄÚËù¶ÔÓ¦µãµÄ×ø±êΪ£¨¡¡¡¡£©
A£®£¨1£¬1£©B£®£¨1£¬-1£©C£®£¨-1£¬1£©D£®£¨-1£¬-1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖª¹«²î²»ÎªÁãµÄµÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÈôS10=110£¬ÇÒa1£¬a2£¬a4³ÉµÈ±ÈÊýÁÐ
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©ÉèÊýÁÐ{bn}Âú×ã${b_n}=\frac{1}{{£¨{{a_n}-1}£©£¨{{a_n}+1}£©}}$£¬ÈôÊýÁÐ{bn}ǰnÏîºÍTn£¬Ö¤Ã÷${T_n}£¼\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=cos£¨2x-$\frac{¦Ð}{6}$£©+sin2x£¬Ôòf£¨x£©µÄÒ»¸öµ¥µ÷µÝ¼õÇø¼äÊÇ£¨¡¡¡¡£©
A£®[-$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{6}$]B£®[-$\frac{¦Ð}{3}$£¬$\frac{2¦Ð}{3}$]C£®[-$\frac{¦Ð}{6}$£¬$\frac{5¦Ð}{6}$]D£®[$\frac{¦Ð}{6}$£¬$\frac{2¦Ð}{3}$]

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸