精英家教网 > 高中数学 > 题目详情

已知函数,的部分图象如图所示.

(Ⅰ)求函数的解析式;
(Ⅱ)求函数的单调递增区间.

(Ⅰ)f (x)=2sin(2x+);(Ⅱ)(k∈Z).

解析试题分析:(Ⅰ)根据图像与x轴的交点可求得,进而求得;然后根据函数图像过点(,0)可得,过点(0,1)可得A=2,即可求得解析式f (x)=2sin(2x+);(Ⅱ)用换元法即可求得g(x)的单调递增区间是(k∈Z).
试题解析:(Ⅰ)由题设图象知,周期,所以
因为点(,0)在函数图象上,所以Asin(2×+φ)=0,即sin(+φ)=0.
又因为0<φ<,所以,从而+φ=π,即.
又点(0,1)在函数图象上,所以,得A=2,
故函数f (x)的解析式为f (x)=2sin(2x+).
(Ⅱ)由
,k∈Z,
所以函数g(x)的单调递增区间是(k∈Z).
考点:1.正弦型函数解析式的求法;2.三角函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知α,β为锐角,且sinα=,tan(α-β)=-.求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求的最大值及相应的x值;
(2)利用函数y=sin的图象经过怎样的变换得到f(x)的图象. 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是关于的方程的两个根.
(1)求的值;
(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

ΔABC中,.
(1)求证:;
(2)若a、b、c分别是角A、B、C的对边,,求c和ΔABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的最小正周期和最值;
(2)求函数的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的最小值和最小正周期;
(Ⅱ)设的内角的对边分别为,满足,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最大值为,且是相邻的两对称轴方程.
(1)求函数上的值域;
(2)中,,角所对的边分别是,且 ,,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,
(1)求角B的大小;
(2)求的取值范围.

查看答案和解析>>

同步练习册答案