精英家教网 > 高中数学 > 题目详情

已知α,β为锐角,且sinα=,tan(α-β)=-.求cosβ的值.

.

解析试题分析:先由tan(α-β)=-计算出,再构造角,利用两角差的余弦公式解答.
试题解析:
          2分
          4分
            5分
        6分

              10分
考点:角的构造、两角差的余弦公式、切割化弦.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,图象为函数的部分图象

(1)求的解析式
(2)已知的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角A、B、C所对的边分别为a、b、c,q=(,1),p=()且
(1)求的值;
(2)求三角函数式的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(l)求函数的最小正周期和最大值;
(2)求函数上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1) 求的最小正周期及其图像的对称轴方程;
(2) 将函数的图像向右平移个单位长度,得到函数的图像,求在区间的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)若处取得最大值,求的值;
(Ⅲ)求的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,游客在景点处下山至处有两条路径.一条是从沿直道步行到,另一条是先从沿索道乘缆车到,然后从沿直道步行到.现有甲、乙两位游客从处下山,甲沿匀速步行,速度为.在甲出发后,乙从乘缆车到,在处停留后,再从匀速步行到.假设缆车匀速直线运动的速度为,索道长为,经测量.

(1)求山路的长;
(2)假设乙先到,为使乙在处等待甲的时间不超过分钟,乙步行的速度应控制在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,扇形AOB,圆心角AOB的大小等于,半径为2,在半径OA上有一动点C,过点C作平行于OB的直线交弧AB于点P.

(1)若C是半径OA的中点,求线段PC的长;
(2)设,求面积的最大值及此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,的部分图象如图所示.

(Ⅰ)求函数的解析式;
(Ⅱ)求函数的单调递增区间.

查看答案和解析>>

同步练习册答案