精英家教网 > 高中数学 > 题目详情

中,
(1)求角B的大小;
(2)求的取值范围.

(1) ;(2) .

解析试题分析:(1)由正弦定理实现边角互化,再利用两角和与差的正余弦公式化简为,再求角的值;(2)二倍角公式降幂扩角,两角差余弦公式展开,同时注意隐含条件,即可化为一角一函数,再结合求其值域.求解时一定借助函数图象找其最低点与最高点的纵坐标.
试题解析:(1)由已知得:

 
                                 5分
(2)由(1)得:,故+




 ∴
所以的取值范围是.            12分
考点:1.正余弦定理;2.三角函数值域;3.二倍角公式与两角和与差的正余弦公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,的部分图象如图所示.

(Ⅰ)求函数的解析式;
(Ⅱ)求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且当时,的最小值为2.
(1)求的值,并求的单调增区间;
(2)将函数的图象上各点的纵坐标保持不变,横坐标缩短到原来的倍,再把所得图象向右平移个单位,得到函数,求方程在区间上的所有根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求的最小正周期和单调递增区间;
(Ⅱ)求函数上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的最小正周期; (2)求的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数且函数的最小正周期为.
(1)求的值和函数的单调增区间;
(2)在中,角A、B、C所对的边分别是,又的面积等于,求边长的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a,b,c分别为ΔABC三个内角A,B,C的对边长,.
(Ⅰ)求角A的大小;
(II)若a=,ΔABC的面积为1,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边分别为,已知
(Ⅰ)求的大小;
(Ⅱ)若,求的周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的三边为,满足
(1)求的值;
(2)求的取值范围.

查看答案和解析>>

同步练习册答案