精英家教网 > 高中数学 > 题目详情
16.已知a,b,c为正数,且a+b+c=1.
(1)求$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$的最小值;
(2)求$\frac{1}{3a+2}$+$\frac{1}{3b+2}$+$\frac{1}{3c+2}$的最小值.

分析 (1)利用柯西不等式的性质即可得出.
(2)变形利用柯西不等式的性质即可得出.

解答 解:(1)∵a,b,c为正数,且a+b+c=1.
∴$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$=(a+b+c)$(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})$≥3$(a×\frac{1}{a}+b×\frac{1}{b}+c×\frac{1}{c})$=9,
当且仅当a=b=c=$\frac{1}{3}$时取等号.
∴$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$的最小值为9.
(2)∵a,b,c为正数,且a+b+c=1.
∴$\frac{1}{3a+2}$+$\frac{1}{3b+2}$+$\frac{1}{3c+2}$=$\frac{1}{9}$(3a+2+3b+2+3c+2)$(\frac{1}{3a+2}+\frac{1}{3b+2}+\frac{1}{3c+2})$
≥$\frac{1}{9}$×3×(1+1+1)=1,当且仅当3a+2=3b+2=3c+2=3,即a=b=c=$\frac{1}{3}$时取等号.
∴$\frac{1}{3a+2}$+$\frac{1}{3b+2}$+$\frac{1}{3c+2}$的最小值是1.

点评 本题考查了柯西不等式的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若(1-mx)5=a0+a1x+a2x2+…+a5x5,且a5=-32,则a1+a2+a3+a4的值为30.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C的中心在原点,离心率为$\frac{{\sqrt{3}}}{2}$,且与抛物线${y^2}=4\sqrt{3}x$有共同的焦点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设椭圆C的左、右顶点分别为A1、A2,P为椭圆C上异于A1、A2的动点,直线A1P、A2P分别交直线l:x=4于M、N两点,设d为M、N两点之间的距离,求d的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设a>0,b>0,且a+b=1.证明:
( I)$\frac{a^2}{b}$+$\frac{b^2}{a}$≥a+b;
(II)$\sqrt{2a+1}$+$\sqrt{2b+1}$≤2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若a∈R,则“a>3”是“a2-9>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=2sin(ωx+ϕ)(ω>0,|ϕ|<$\frac{π}{2}$)的图象如图所示,则函数f(x)的解析式是f(x)=2sin(2x+$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.抛掷一个均匀的正方体玩具(它的每一面上分别标有数字1,2,3,4,5,6),它落地时向上的数是3的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.观察下列等式:
1=1
3+5=8
5+7+9=21
7+9+11+13=40
9+11+13+15+17=65

按此规律,第7个等式右边等于133.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设数列{an}的前n项和为Sn,点(n,$\frac{S_n}{n}$)(n∈N*)均在函数y=2x-3的图象上.
(Ⅰ)求证:数列{an}为等差数列;
(Ⅱ)Tn是数列$\{\frac{3}{{{a_n}{a_{n+1}}}}\}$的前n项和,求使Tn<$\frac{m}{12}$-1对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

同步练习册答案