精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=2sin(ωx+ϕ)(ω>0,|ϕ|<$\frac{π}{2}$)的图象如图所示,则函数f(x)的解析式是f(x)=2sin(2x+$\frac{π}{6}$).

分析 根据特殊点的坐标求出φ的值,根据五点法作图求得ω,可得函数的解析式.

解答 解:由函数f(x)=2sin(ωx+ϕ)(ω>0,|ϕ|<$\frac{π}{2}$)的图象,可得它的图象经过点(0,1),
∴2sinφ=1,即sinφ=$\frac{1}{2}$,∴φ=$\frac{π}{6}$,∴f(x)=2sin(ωx+$\frac{π}{6}$).
再根据五点法作图可得,ω•$\frac{11π}{12}$+$\frac{π}{6}$=2π,∴ω=2,即 f(x)=2sin(2x+$\frac{π}{6}$),
故答案为:$f(x)=2sin(2x+\frac{π}{6})$.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,根据特殊点的坐标求出φ的值,根据五点法作图求得ω,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知椭圆D:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的半焦距c=1,且a=$\sqrt{2}$b.
(1)求椭圆D的标准方程;
(2)过点M(0,m)且斜率为$\sqrt{2}$的直线l与椭圆D有两个不同的交点P和Q,若以PQ为直径的圆经过原点O,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,已知四边形ABCD是矩形,PA⊥平面ABCD,AB=2,PA=AD=4,E为BC的中点.
(1)求证:平面PED⊥平面PAE;
(2)求直线PD与平面PAE所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合.若直线l的极坐标方程为ρcos(θ-$\frac{π}{4}}$)=3$\sqrt{2}$
(1)把直线l的极坐标方程化为直角坐标方程;
(2)已知P为曲线C:$\frac{x^2}{16}+\frac{y^2}{9}$=1上一点,求点P到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a,b,c为正数,且a+b+c=1.
(1)求$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$的最小值;
(2)求$\frac{1}{3a+2}$+$\frac{1}{3b+2}$+$\frac{1}{3c+2}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知复数z满足z(3+4i)=5-5i,则复数z在复平面对应的点所在的象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如果关于x的不等式|x-2|-|x-5|<2的解集为{x|x<$\frac{9}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$当x∈[0,10]时,关于x的方程f(x)=x的所有解的和为(  )
A.50B.55C.60D.65

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知四边形MNPQ的顶点M(1,1),N(3,-1),P(4,0),Q(2,2),
(1)求斜率kMN与斜率kPQ
(2)求证:四边形MNPQ为矩形.

查看答案和解析>>

同步练习册答案