精英家教网 > 高中数学 > 题目详情
12.如图,已知四边形ABCD是矩形,PA⊥平面ABCD,AB=2,PA=AD=4,E为BC的中点.
(1)求证:平面PED⊥平面PAE;
(2)求直线PD与平面PAE所成的角.

分析 (1)四边形ABCD是矩形,可得∠B=∠C=90°,由已知可得:AE2+DE2=16=AD2,因此DE⊥AE,利用PA⊥平面ABCD,可得PA⊥DE.再利用线面面面垂直的判定与性质定理即可证明.
(2)由(1)可得:DE⊥平面PAE,可得∠DPE是直线PD与平面PAE所成的角.再利用直角三角形的边角关系即可得出.

解答 (1)证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,
∵AB=2,PA=AD=4,E为BC的中点.
∴AE2=22+22=8=DE2
∴AE2+DE2=16=AD2
∴∠AED=90°,
∴DE⊥AE,
∵PA⊥平面ABCD,DE?平面ABCD,∴PA⊥DE.
又PA∩AE=A,
∴DE⊥平面PAE,又DE?平面PED.
∴平面PED⊥平面PAE.
(2)解:由(1)可得:DE⊥平面PAE,
∴∠DPE是直线PD与平面PAE所成的角.
在Rt△PAE中,PE=$\sqrt{P{A}^{2}+A{E}^{2}}$=$\sqrt{{4}^{2}+{2}^{2}+{2}^{2}}$=2$\sqrt{6}$.
同理可得:DE=2$\sqrt{2}$.
∴tan∠DPE=$\frac{DE}{PE}$=$\frac{2\sqrt{2}}{2\sqrt{6}}$=$\frac{\sqrt{3}}{3}$,
∴∠DPE=$\frac{π}{6}$.

点评 本题考查了空间位置关系、空间角、勾股定理及其逆定理、矩形的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知直线l1:2x+3y-5=0,l2:3x-2y-3=0.
(1)求两直线的交点P的坐标;
(2)求过点P且平行于直线2x+y-3=0的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若命题“存在x0∈R,使得mx02+mx0+2≤0”为假命题,则实数m的取值范围是(  )
A.(-∞,0]∪[8,+∞)B.(0,8]C.[0,8)D.(0,8)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.关天x的方程:$\frac{x+2}{x+1}$-$\frac{x-1}{x-2}$=$\frac{2{x}^{2}+ax}{(x-2)(x+1)}$只有一个实根,则实数a的值为(  )
A.-2$\sqrt{6}$B.2$\sqrt{6}$C.a=5或a=-$\frac{11}{2}$D.±2$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C的中心在原点,离心率为$\frac{{\sqrt{3}}}{2}$,且与抛物线${y^2}=4\sqrt{3}x$有共同的焦点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设椭圆C的左、右顶点分别为A1、A2,P为椭圆C上异于A1、A2的动点,直线A1P、A2P分别交直线l:x=4于M、N两点,设d为M、N两点之间的距离,求d的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.平面直角坐标系中,点(-2,t)在直线x-2y+4=0左上方,则t的取值范围是t>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设a>0,b>0,且a+b=1.证明:
( I)$\frac{a^2}{b}$+$\frac{b^2}{a}$≥a+b;
(II)$\sqrt{2a+1}$+$\sqrt{2b+1}$≤2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=2sin(ωx+ϕ)(ω>0,|ϕ|<$\frac{π}{2}$)的图象如图所示,则函数f(x)的解析式是f(x)=2sin(2x+$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}、{bn}分别是等差数列、等比数列,且满足a3=8,a6=17,b1=2,b1b2b3=9(a2+a3+a4).
(1)分别求数列{an}、{bn}的通项公式;
(2)设cn=log3bn,求证:数列{cn}是等差数列,并求其公差d′和首项c1
(3)设Tn=b1+b4+b7+…+b3n-2,其中n=1,2,…,求Tn的值.

查看答案和解析>>

同步练习册答案