已知数列{an}的前n项和为Sn,且Sn=2n2+n,n∈N*,数列{bn}满足an=4log2bn+3,n∈N*.
(1)求an,bn;
(2)求数列{an·bn}的前n项和Tn.
(1) an=4n-1,n∈N* bn=2n-1,n∈N* (2) Tn=(4n-5)2n+5,n∈N*
解析解:(1)由Sn=2n2+n,得
当n=1时,a1=S1=3;
当n≥2时,an=Sn-Sn-1=4n-1
所以an=4n-1,n∈N*
由4n-1=an="4" log2bn+3,得bn=2n-1,n∈N*.
(2)由(1)知anbn=(4n-1)·2n-1,n∈N*,
所以Tn=3+7×2+11×22+…+(4n-1)·2n-1,
2Tn=3×2+7×22+…+(4n-5)·2n-1+(4n-1)·2n,
所以2Tn-Tn=(4n-1)2n-[3+4(2+22+…+2n-1)]=(4n-5)2n+5
故Tn=(4n-5)2n+5,n∈N*.
科目:高中数学 来源: 题型:解答题
对于数列,把作为新数列的第一项,把或()作为新数列的第项,数列称为数列的一个生成数列.例如,数列的一个生成数列是.已知数列为数列的生成数列,为数列的前项和.
(1)写出的所有可能值;
(2)若生成数列满足的通项公式为,求.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
正项数列{an}的前n项和Sn满足:-(n2+n-1)Sn-(n2+n)=0.
(1)求数列{an}的通项公式an;
(2)令bn=,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有Tn< .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com