精英家教网 > 高中数学 > 题目详情
16.已知数列{an}的各项均为正数,前n和为Sn,且Sn=$\frac{{({{a_n}+2})({{a_n}-1})}}{2}$(n∈N*).
(Ⅰ)求证:数列{an}是等差数列;
(Ⅱ)设bn=an•3n,求数列{bn}的前n项的和Tn

分析 (Ⅰ)当当n≥2时,求得Sn及Sn-1,做差求得:${a_n}=\frac{{{a_n}^2+{a_n}-{a_{n-1}}^2-{a_{n-1}}}}{2}$整理得:(an+an-1)(an-an-1)=(an+an-1)由an+an-1≠0,即可得到an-an-1=1,当n=1时,求得a1=2即可得数列{an}是等差数列;
(Ⅱ)由(Ⅰ)求得数列{an}的通项公式,数列{bn}的前n项和Tn,采用乘以公比“错位相减法”,即可求得Tn

解答 解:(Ⅰ)证明:当n≥2时,${S_n}=\frac{{({{a_n}+2})({{a_n}-1})}}{2}({n∈{N^*}})$.…①
${S_{n-1}}=\frac{{({{a_{n-1}}+2})({{a_{n-1}}-1})}}{2}$…②
①-②得:${a_n}=\frac{{{a_n}^2+{a_n}-{a_{n-1}}^2-{a_{n-1}}}}{2}$,…(1分)
整理得:(an+an-1)(an-an-1)=(an+an-1).                 …(2分)
∵数列{an}的各项均为正数,即an+an-1≠0,
∴an-an-1=1(n≥2).                                   …(3分)
当n=1时,${a_1}={S_1}=\frac{{({{a_1}+2})({{a_1}-1})}}{2}$,得${a_1}^2-{a_1}-2=0$,
由a1>0,得a1=2,…(4分)
∴数列{an}是首项为2,公差为1的等差数列.               …(5分)
(Ⅱ)由(1)得an=2+(n-1)×1=n+1…(6分)
∴${b_n}={a_n}•{3^n}=({n+1})•{3^n}$…(7分)
${T_n}=2×{3^1}+3×{3^2}+4×{3^3}+…+n×{3^{n-1}}+({n+1})×{3^n}$…(1)…(8分)
$3{T_n}=2×{3^2}+3×{3^3}+4×{3^4}+$…+n×3n+(n+1)×3n+1…(2)…(9分)
(1)-(2)得$-2{T_n}=6+{3^2}+{3^3}+…+{3^n}-({n+1})×{3^{n+1}}$…(10分)
∴$-2{T_n}=6+\frac{{{3^2}-{3^n}×3}}{1-3}-({n+1})×{3^{n+1}}=\frac{{{3^{n+1}}-3}}{2}-({n+1})×{3^{n+1}}$…(11分)
∴${T_n}=\frac{1}{4}({2n+1}){3^{n+1}}-\frac{3}{4}$…(12分)

点评 本题考查求数列的通项公式,采用错位相减法求数列的前n项和,考查观察能力及计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.不等式$\frac{1}{x}$>3的解集是(0,$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若2a=3b=100,求$\frac{1}{a}+\frac{1}{b}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个几何体的三视图如图所示,正视图、侧视图和俯视图都是等腰直角三角形,则该几何体的体积为(  )
A.$\frac{8}{3}$B.$\frac{4}{3}$C.$\frac{2}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.对于a∈R,下列等式中恒成立的是(  )
A.cos(-α)=-cosαB.sin(-α)=-sinαC.sin(90°-α)=sinαD.cos(90°-α)=cosα

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=3sin(ωx+φ+$\frac{π}{4}$)(ω>0,|φ|<$\frac{π}{2}$)的相邻对称轴之间的距离为$\frac{π}{2}$,且满足f(-x)=f(x),则(  )
A.f(x)在(0,$\frac{π}{2}$)上单调递增B.f(x)在($\frac{π}{4}$,$\frac{3π}{4}$)上单调递减
C.f(x)在(0,$\frac{π}{2}$)上单调递减D.f(x)在($\frac{π}{4}$,$\frac{3π}{4}$)上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如果sin(x+$\frac{π}{2}$)=$\frac{1}{2}$,则cos(-x)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,满足3an-2Sn-1=0.
(1)求数列{an}的通项公式;
(2)bn=$\frac{n(2{S}_{n}+1)}{{a}_{n}}$,数列{bn}的前n项和为Tn,求f(n)=$\frac{{b}_{n}}{{T}_{n}+24}$(n∈N+)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知随机变量ξ的分布列为P(ξ=-1)=$\frac{1}{2}$,P(ξ=0)=$\frac{1}{3}$,P(ξ=1)=$\frac{1}{6}$,设η=3ξ+2,则Eη的值为(  )
A.9B.-$\frac{1}{3}$C.1D.-1

查看答案和解析>>

同步练习册答案