精英家教网 > 高中数学 > 题目详情

【题目】已知+1()在(0,+∞)内有且只有一个零点,[﹣1,1]上的值域为

A. [﹣4,0] B. [﹣4,1] C. [﹣1,3] D. [﹣,12]

【答案】B

【解析】

f′(x)=2x(3x﹣a),x∈(0,+∞),当a≤0时,f′(x)=2x(3x﹣a)>0,f(0)=1,f(x)在(0,+∞)上没有零点;当a>0时,f′(x)=2x(3x﹣a)>0的解为x>,f(x)在(0,)上递减,在(,+∞)递增,由f(x)只有一个零点,解得a=3,从而f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x∈[﹣1,1],利用导数性质能求出f(x)在[﹣1,1]上的值域即可.

∵函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,

∴f′(x)=2x(3x﹣a),x∈(0,+∞),

①当a≤0时,f′(x)=2x(3x﹣a)>0,

函数f(x)在(0,+∞)上单调递增,f(0)=1,

f(x)在(0,+∞)上没有零点,舍去;

②当a>0时,f′(x)=2x(3x﹣a)>0的解为x>

∴f(x)在(0,)上递减,在(,+∞)递增,

f(x)只有一个零点,

∴f()=﹣+1=0,解得a=3,

f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x∈[﹣1,1],

f′(x)>0的解集为(﹣1,0),

f(x)在(﹣1,0)上递增,在(0,1)上递减,

f(﹣1)=﹣4,f(0)=1,f(1)=0,

∴f(x)min=f(﹣1)=﹣4,f(x)max=f(0)=1,

故函数的值域是[﹣4,1],

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某电动车售后服务调研小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分成5组:,绘制成如图所示的频率分布直方图.

1)求续驶里程在的车辆数;

2)求续驶里程的平均数;

3)若从续驶里程在的车辆中随机抽取2辆车,求其中恰有一辆车的续驶里程在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)时,用定义证明函数在定义域上的单调性;

(2)若函数是偶函数,

(i)的值;

(ii),若方程只有一个解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】①某学校高二年级共有526人,为了调查学生每天用于休息的时间,决定抽取10%的学生进行调查;②运动会的工作人员为参加接力赛的6支队伍安排跑道;③一次数学月考中,某班有10人的成绩在100分以上,32人的成绩在90100分,12人的成绩低于90分,现从中抽取9人有解有关情况.针对这三个事件,恰当的抽样方法分别为(

A.分层抽样、分层抽样、简单随机抽样B.系统抽样、简单随机抽样、分层抽样

C.简单随机抽样、简单随机抽样、分层抽样D.系统抽样、分层抽样、简单随机抽样

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且.

(Ⅰ)求的值;

(Ⅱ)求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数=,若对于任意实数,不等式恒成立,则实数的取值范围是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy,曲线=0(a>0),曲线的参数方程为(为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系;

(1)求曲线的极坐标方程;

(2)已知极坐标方程为=的直线与曲线分别相交于P,Q两点(均异于原点O),若|PQ|=﹣1,求实数a的值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校有四件作品参加航模类作品比赛.已知这四件作品中恰有两件获奖.在结果揭晓前,甲、乙、丙、丁四位同学对这四件参赛作品的获奖情况预测如下:

甲说:“同时获奖”;

乙说:“不可能同时获奖”;

丙说:“获奖”;

丁说:“至少一件获奖”.

如果以上四位同学中有且只有二位同学的预测是正确的,则获奖的作品是( )

A. 作品与作品 B. 作品与作品 C. 作品与作品 D. 作品与作品

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求实数a的取值范围.

查看答案和解析>>

同步练习册答案