精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy,曲线=0(a>0),曲线的参数方程为(为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系;

(1)求曲线的极坐标方程;

(2)已知极坐标方程为=的直线与曲线分别相交于P,Q两点(均异于原点O),若|PQ|=﹣1,求实数a的值;

【答案】(1) (2)2

【解析】

(1)直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换.(2)利用(1)的结论,进一步利用极径求出参数的值.

(1)在平面直角坐标系xOy中,曲线C1:x2﹣2ax+y2=0(a>0),

转换为极坐标方程为:ρ2=2aρcosθ,

即:ρ=2acosθ.

曲线C2的参数方程为(α为参数),

转换为直角坐标方程为:x2+(y﹣1)2=1,

转换为极坐标方程为:ρ=2cosθ.

(2)已知极坐标方程为θ=的直线与曲线C1,C2分别相交于P,Q两点,

,得到:P(),Q(),

由于:|PQ|=2﹣1,所以:

解得:a=2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】世界读书日来临之际,某校为了了解中学生课外阅读情况,随机抽取了名学生,并获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表.

组号

分组

频数

频率

1

[05

5

0.05

2

[510

a

0.35

3

[1015

30

b

4

[1520

20

0.20

5

[2025]

10

0.10

合计

100

1

1)求的值

2)作出这些数据的频率分布直方图

3)假设每组数据组间是平均分布的,试估计该组数据的平均数和中位数.(同一组中的数据用该组区间的中点值作代表)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平行四边形所在平面与直角梯形所在平面互相垂直,且中点.

1)求异面直线所成的角;

2)求平面与平面所成的二面角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知+1()在(0,+∞)内有且只有一个零点,[﹣1,1]上的值域为

A. [﹣4,0] B. [﹣4,1] C. [﹣1,3] D. [﹣,12]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数在定义域上是单调增函数,求实数a的取值范围;

2)讨论的极值点的个数;

3)若有两个极值点,且,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中有:①若,则②若,则定为等腰三角形③若,则定为直角三角形;④若,且该三角形有两解,则的范围是.以上结论中正确的个数有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱柱的底面是边长为的菱形,且平面于点,点的中点.

1)求证:平面

2)求平面和平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数对任意实数恒有且当,又

1)判断的奇偶性;

2)求在区间上的最大值;

3)解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆是以的中点为圆心,为半径的圆.

(1)若圆的切线在轴和轴上截距相等,求切线方程;

(2)若是圆外一点,从向圆引切线为切点,为坐标原点,,求使最小的点的坐标.

查看答案和解析>>

同步练习册答案