精英家教网 > 高中数学 > 题目详情
16.正方体ABCD-A1B1C1D1,E,F分别是上底面A1B1C1D1和侧面CDD1C1的中心,若$\overrightarrow{AF}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$+z$\overrightarrow{AE}$,则x+y+z=$\frac{3}{2}$.

分析 构造辅助线,分别表示出$\overrightarrow{AE}$和$\overrightarrow{AF}$,两式相减消去$\overrightarrow{A{A}_{1}}$,即可求得$\overrightarrow{AF}$=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AD}$+$\frac{1}{2}$$\overrightarrow{AE}$,即可求得x+y+z的值.

解答 解:如图,由题意可知:连接AC,BC交点为O,则点E在平面ABCD内的射影为O,
∴$\overrightarrow{AE}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AD}$+$\overrightarrow{A{A}_{1}}$,①
点F在平面ABCD内的射影为M,
∴$\overrightarrow{AF}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\overrightarrow{AD}$+$\frac{1}{2}$$\overrightarrow{A{A}_{1}}$,②
②-①×$\frac{1}{2}$得:$\overrightarrow{AF}$-$\frac{1}{2}$$\overrightarrow{AE}$=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AD}$,
∴$\overrightarrow{AF}$=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AD}$+$\frac{1}{2}$$\overrightarrow{AE}$,
∴x+y+z=$\frac{3}{2}$,
故答案为:$\frac{3}{2}$.

点评 本题考查空间向量的线性表示,考查逻辑推理能力与空间想象能力,考查转换思想和数形结合,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为$\frac{81}{125}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知定义在R上的奇函数f(x)和偶函数g(x)满足:f(x)+g(x)=ex,则$\frac{{2}^{n}g(1)g(2)g({2}^{2})…g({2}^{n-1})}{f({2}^{n})}$=$\frac{2e}{{e}^{2}+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.给出下列结论:
①2ab是a2+b2的最小值;
②设a>0,b>0,2$\sqrt{ab}$的最大值是a+b;
③$\sqrt{{x}^{2}+4}$+$\frac{1}{\sqrt{{x}^{2}+4}}$的最小值是2;
④若x>0,则cosx+$\frac{1}{cosx}$≥2$\sqrt{cosx•\frac{1}{cosx}}$=2;
⑤若a>b>0,$\frac{a+b}{2}$>$\sqrt{ab}$>$\frac{2ab}{a+b}$.
其中正确结论的编号是⑤.(写出所有正确的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知椭圆x2+$\frac{y^2}{4}$=1,A、B是椭圆的左右顶点,P是椭圆上不与A、B重合的一点,PA、PB的倾斜角分别为α、β,tan(α-β)的取值范围是$({-∞,-\frac{4}{3}}]∪[{\frac{4}{3},+∞})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线l:x+y+2=0与圆C:(x-1)2+(y+1)2=2,则圆心C到直线l的距离(  )
A.$2\sqrt{2}$B.2C.$\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,若|AF|=$\frac{5}{4}$x0,则x0等于(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x+$\frac{a}{x}$,x∈(0,+∞).
(I)当a=1时,试用函数单调性的定义,判断函数f(x)的单调性;
(II)若x∈[3,+∞),关于x不等式x+$\frac{1}{x}$≥|m-$\frac{5}{3}$|+|m+$\frac{5}{3}$|恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,则输出的结果S=(  )
A.$\frac{1}{2016}$B.$\frac{2015}{2016}$C.$\frac{1}{2015}$D.$\frac{2014}{2015}$

查看答案和解析>>

同步练习册答案