分析 构造辅助线,分别表示出$\overrightarrow{AE}$和$\overrightarrow{AF}$,两式相减消去$\overrightarrow{A{A}_{1}}$,即可求得$\overrightarrow{AF}$=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AD}$+$\frac{1}{2}$$\overrightarrow{AE}$,即可求得x+y+z的值.
解答 解:如图,由题意可知:连接AC,BC交点为O,则点E在平面ABCD内的射影为O,
∴$\overrightarrow{AE}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AD}$+$\overrightarrow{A{A}_{1}}$,①
点F在平面ABCD内的射影为M,
∴$\overrightarrow{AF}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\overrightarrow{AD}$+$\frac{1}{2}$$\overrightarrow{A{A}_{1}}$,②
②-①×$\frac{1}{2}$得:$\overrightarrow{AF}$-$\frac{1}{2}$$\overrightarrow{AE}$=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AD}$,
∴$\overrightarrow{AF}$=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AD}$+$\frac{1}{2}$$\overrightarrow{AE}$,
∴x+y+z=$\frac{3}{2}$,
故答案为:$\frac{3}{2}$.![]()
点评 本题考查空间向量的线性表示,考查逻辑推理能力与空间想象能力,考查转换思想和数形结合,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{2}$ | B. | 2 | C. | $\sqrt{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2016}$ | B. | $\frac{2015}{2016}$ | C. | $\frac{1}{2015}$ | D. | $\frac{2014}{2015}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com