精英家教网 > 高中数学 > 题目详情
7.食品添加剂会引起血脂增高、血压增高、血糖增高等疾病,为了解三高疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:
(1)请将列联表补充完整;
患三高疾病不患三高疾病合计
24630
121830
合计362460
(2)为了研究三高疾病是否与性别有关,请计算出统计量K2,并说明你有多大把握认为患三高疾病与性别有关.
下列的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)

分析 (1)利用所给数据,可得2×2列联表;
(2)求出K2,与临界值比较,即可得出结论.

解答 解:(1)

患三高疾病不患三高疾病合计
24630
121830
合计362460
(2)K2=$\frac{60×(24×18-12×6)^{2}}{36×24×30×30}$=10>7.879,
∴我们有99.5%的把握认为患三高疾病与性别有关.

点评 本题考查独立性检验知识的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若物体的运动方程是s=t3+t2-1,t=3时物体的瞬时速度是(  )
A.27B.31C.39D.33

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知三棱锥A-BCD中,BC⊥CD,AB=AD=$\sqrt{2}$,BC=1,CD=$\sqrt{3}$,则该三棱锥外接球的体积为$\frac{4}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知F为椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点,直线PP′过坐标原点O,与椭圆C分别交于点P,P′两点,且|PF|=1,|P′F|=3,椭圆C的离心率e=$\frac{1}{2}$
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线l过椭圆C的右焦点F,且与椭圆C交于A,B两点,若∠AOB是钝角,求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\sqrt{|2x-1|+|x+1|-a}$的定义域为R.
(Ⅰ)求实数a的取值范围;
(Ⅱ)若a的最大值为k,且m+n=2k(m>0,n>0),求证:$\frac{1}{m}$+$\frac{4}{n}$≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知椭圆E的离心率为e,两焦点分别为F1,F2,抛物线C以F1为顶点,F2为焦点,点P为这两条曲线的一个交点,若e|$\overrightarrow{P{F_2}}$|=|$\overrightarrow{P{F_1}}$|,则e的值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{3}$D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将函数f(x)=sin(2x+$\frac{π}{6}$)的图象向右平移$\frac{π}{6}$个单位,所得的图象对应的解析式为(  )
A.y=sin2xB.y=cosxC.y=sin(2x+$\frac{2π}{3}$)D.y=sin(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=sin(x+$\frac{5π}{2}$)的图象关于(  )
A.原点对称B.y轴对称C.直线x=$\frac{5π}{2}$对称D.直线x=-$\frac{5π}{2}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设定义在R上的可导函数f(x)的导函数为f′(x),若f(3)=1,且3f(x)+xf′(x)>1,则不等式(x-2017)3f(x-2017)-27>0的解集为(  )
A.(2014,+∞)B.(0,2014)C.(0,2020)D.(2020,+∞)

查看答案和解析>>

同步练习册答案