精英家教网 > 高中数学 > 题目详情
14.方程5x-5-x+1+4=0的解集为{0}.

分析 方程5x-5-x+1+4=0化为(5x2+4•5x-5=0,化为(5x+5)(5x-1)=0,解出即可.

解答 解:方程5x-5-x+1+4=0化为(5x2+4•5x-5=0,
∴(5x+5)(5x-1)=0,
∵5x>0,
∴5x-1=0,
解得x=0.
故答案为:{0}.

点评 本题考查了因式分解方法、指数幂的运算性质、一元二次方程的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.如图所示,在平面直角坐标系xOy中,角α的终边与单位圆交于点A,点A的纵坐标为$\frac{2}{3}$,则cosα=-$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,-1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|$\overrightarrow{a}$-2$\overrightarrow{b}$|=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.直线l1,l2在x轴上的截距都是m,在y轴上的截距都是n,则11与l2(  )
A.平行B.重合C.平行或重合D.相交或重合

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知直线l1经过两点(-1,2),(-1,4),直线l2经过两点(0,1),(x-2,6),且l1∥l2,则x=(  )
A.2B.-2C.4D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下列函数的单调区间
(1)y=-$\frac{x+2}{x-1}$   
(2)y=x-$\sqrt{9-3x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,在四边形ABCD中,AB=AD=CD=1,BD=$\sqrt{2}$,BD⊥CD,将四边形ABCD沿对角线BD折成四面体A′BCD,使得平面A′BD⊥平面BDC,给出下列四个结论,其中正确的有(  )
A.A′B⊥CD
B.四面体A′BCD的体积为$\frac{1}{2}$
C.A′C与BD所成的角为60°
D.四面体A′BCD的外接球的表面积为$\frac{7π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.较下列各组数的大小:
(1)27,82
(2)log0.22,log0.049;
(3)a1.2,a1.3
(4)0.213,0.233

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的焦点分别为F1(-1,0),F2(1,0),且经过定点$P(1,\frac{{\sqrt{2}}}{2})$
(1)求椭圆C的方程;
(2)设直线y=$\frac{{\sqrt{2}}}{2}$(x+1)交椭圆C于A,B两点,求线段AB的长.

查看答案和解析>>

同步练习册答案