精英家教网 > 高中数学 > 题目详情
19.已知函数$f(x)=lnx-\frac{1}{4}x+\frac{3}{4x}-1$.
(1)求函数f(x)的单调递减区间;
(2)设g(x)=-x2+2bx-4,(1≤b≤2),若对任意x1∈(0,2),x2∈[1,2],不等式f(x1)≥g(x2)恒成立,求实数b的取值范围.

分析 (1)求出导函数没理由导函数的符号,求解函数的单调区间即可.
(2)若对任意x1∈(0,2),x2∈[1,2],不等式f(x1)≥g(x2)恒成立等价于f(x)min≥g(x)max
通过求解函数的最值,列出不等式求解实数b的取值范围.

解答 解:(1)$f(x)=lnx-\frac{1}{4}x+\frac{3}{4x}-1(x>0)$,$f'(x)=\frac{1}{x}-\frac{1}{4}-\frac{3}{{4{x^2}}}=\frac{{4x-{x^2}-3}}{{4{x^2}}}$,
由x>0及f'(x)<0,得0<x<1或x>3,
故函数f(x)的单调递减区间是(0,1),(3,+∞).
(2)若对任意x1∈(0,2),x2∈[1,2],不等式f(x1)≥g(x2)恒成立等价于f(x)min≥g(x)max
由(1)可知,在(0,2)上,x=1是函数极小值点,这个极小值是唯一的极值点,故也是最小值点,
所以$f{(x)_{min}}=f(1)=-\frac{1}{2}$;g(x)=-x2+2bx-4,x∈[1,2],
当1≤b≤2时,$g{(x)_{max}}=g(b)={b^2}-4$,$\left\{\begin{array}{l}1≤b≤2\\-\frac{1}{2}≥{b^2}-4\end{array}\right.$即$1≤b≤\frac{{\sqrt{14}}}{2}$,
所以实数b的取值范围是$1≤b≤\frac{{\sqrt{14}}}{2}$.

点评 本题考查函数的导数的综合应用,函数的单调性以及函数的最值的求法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.在△ABC中,∠ACB=60°,BC>1,AC=AB+$\frac{1}{2}$,当△ABC的周长最短时,BC的长是$\frac{\sqrt{2}}{2}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(  )
A.y=lnxB.y=|x|C.y=-x2D.y=($\frac{1}{2}$)x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设全集U={1,2,3,4,5},集合A={1,3},B={3,5},则∁U(A∪B)=(  )
A.{1,4}B.{1,5}C.{2,4}D.{2,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若x,y∈R,且x=$\sqrt{1-y2}$,则$\frac{y+2}{x+1}$的取值范围是[$\frac{3}{4}$,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知二次函数f(x)=ax2+bx+c满足条件:①-4a≤b<-2a;②x∈[-1,1]时,|f(x)|≤1,若对任意的x∈[-2,2],都有f(x)≥m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设函数f(x)=asinx+x2,若f(1)=2,则f(-1)的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=\frac{{{x^2}+2x+a}}{x},x∈[{1,+∞})$
(1)当$a=\frac{1}{2}$时,判断函数f(x)在[1,+∞)的单调性,并加以证明.
(2)若对任意x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知直线l1:y=-$\frac{3}{2}$x+b于抛物线x2=-$\frac{16}{3}$y相切于点P.
(Ⅰ)求实数b的值和切点P的坐标;
(Ⅱ)若另一条直线l2经过上述切点P,且与圆C:(x+1)2+(y+2)2=25相切,求直线l2的方程.

查看答案和解析>>

同步练习册答案