精英家教网 > 高中数学 > 题目详情
11.设函数f(x)=asinx+x2,若f(1)=2,则f(-1)的值为0.

分析 由已知得f(1)=asin1+1=2,从而asin1=1,由此能求出f(-1)的值.

解答 解:∵函数f(x)=asinx+x2,f(1)=2,
∴f(1)=asin1+1=2,
∴asin1=1,
∴f(-1)=asin(-1)+(-1)2=-asix1+1=-1+1=0.
故答案为:0.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.函数y=cos($\frac{3π}{2}$-x)cos(π+x)+$\sqrt{3}$cos2x-$\frac{\sqrt{3}}{2}$图象的一条对称轴为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{2}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知数列{an}的通项公式为an=n-7$\sqrt{n}$+2,则此数列中数值最小的项是(  )
A.第10项B.第11项C.第12项D.第13项

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=lnx-\frac{1}{4}x+\frac{3}{4x}-1$.
(1)求函数f(x)的单调递减区间;
(2)设g(x)=-x2+2bx-4,(1≤b≤2),若对任意x1∈(0,2),x2∈[1,2],不等式f(x1)≥g(x2)恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知F(x)=ex(ax-1)-a(x-1),a∈R.
(Ⅰ)讨论f(x)=F(x)+a(x-1)的单调性;
(Ⅱ)若有多于两个整数xi(i=1,2,3…n,n≥3)使得F(xi)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知在△ABC中,角A,B,C的对边分别为a,b,c.若cos2A+cos2C=2cos2B,则cosB的最小值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={-1,i}为虚数单位,则下列选项正确的是(  )
A.|-i|∈AB.$\frac{1}{i}∈A$C.i3∈AD.$\frac{1+i}{1-i}∈A$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若关于x的方程(1+i)x2-2(a+i)x+5-3i=0(a∈R)有实数解,求a的值(i为虚数单位).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.将函数f(x)=cosx(sinx-$\sqrt{3}$cosx)的图象向左平移φ(φ>0)个单位后得到函数y=g(x)的图象,若y=g(x)是偶函数,则φ的最小值为$\frac{5π}{12}$.

查看答案和解析>>

同步练习册答案