分析 x=$\sqrt{1-{y}^{2}}$.可得图象:设$\frac{y+2}{x+1}$=k>0,则化为:kx-y+k-2=0,可得kPB≤k≤kPA.
解答 解:x=$\sqrt{1-{y}^{2}}$.可得图象:![]()
设$\frac{y+2}{x+1}$=k>0,
则化为:kx-y+k-2=0,
由$\frac{|k-2|}{\sqrt{{k}^{2}+1}}≤$1,解得k≥$\frac{3}{4}$.
P(-1,-2),A(0,1).
又kPA=$\frac{1-(-2)}{0-(-1)}$=3.
∴$\frac{3}{4}≤k≤3$.
∴$\frac{y+2}{x+1}$的取值范围是:[$\frac{3}{4}$,3].
故答案为:[$\frac{3}{4}$,3].
点评 本题考查了直线与圆的位置关系、点到直线的距离公式、斜率的意义及其应用,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $4\sqrt{3}$ | B. | $-4\sqrt{3}$ | C. | $±4\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第10项 | B. | 第11项 | C. | 第12项 | D. | 第13项 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({0,\frac{{\sqrt{2}}}{2}})$ | B. | $({\frac{{\sqrt{2}}}{2},1})$ | C. | $({0,\frac{1}{2}})$ | D. | $({\frac{1}{2},1})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | |-i|∈A | B. | $\frac{1}{i}∈A$ | C. | i3∈A | D. | $\frac{1+i}{1-i}∈A$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p=4 | B. | p=8 | C. | p=4或p=8 | D. | p=2或p=4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com