精英家教网 > 高中数学 > 题目详情
9.如图,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右焦点为F1,F2,P是椭圆上一点,M在PF1上,$\overrightarrow{{F}_{1}M}$=2$\overrightarrow{MP}$,PO⊥F2M.则椭圆离心率e的取值范围是(  )
A.$({0,\frac{{\sqrt{2}}}{2}})$B.$({\frac{{\sqrt{2}}}{2},1})$C.$({0,\frac{1}{2}})$D.$({\frac{1}{2},1})$

分析 设P(x0,y0),$\overrightarrow{{F}_{1}M}$=2$\overrightarrow{MP}$,$\overrightarrow{OM}$=$\overrightarrow{O{F}_{1}}$+$\frac{2}{3}\overrightarrow{{F}_{1}P}$,可得$\overrightarrow{{F}_{2}M}$=$(\frac{2{x}_{0}}{3}-\frac{4c}{3},\frac{2}{3}{y}_{0})$.由PO⊥F2M.可得$\overrightarrow{OP}•\overrightarrow{{F}_{2}M}$=$(\frac{2{x}_{0}}{3}-\frac{4c}{3}){x}_{0}$+$\frac{2}{3}{y}_{0}^{2}$=0,又${y}_{0}^{2}$=$\frac{{b}^{2}}{{a}^{2}}({a}^{2}-{x}_{0}^{2})$,化为:${c}^{2}{x}_{0}^{2}$-2a2cx0+a2(a2-c2)=0,解出,根据-a<x0<a,即可得出.

解答 解:设P(x0,y0),$\overrightarrow{{F}_{1}M}$=2$\overrightarrow{MP}$,
∴$\overrightarrow{OM}$=$\overrightarrow{O{F}_{1}}$+$\frac{2}{3}\overrightarrow{{F}_{1}P}$=$(\frac{2{x}_{0}}{3}-\frac{1}{3}c,\frac{2}{3}{y}_{0})$,
$\overrightarrow{{F}_{2}M}$=$(\frac{2{x}_{0}}{3}-\frac{4c}{3},\frac{2}{3}{y}_{0})$.
∵PO⊥F2M.
∴$\overrightarrow{OP}•\overrightarrow{{F}_{2}M}$=$(\frac{2{x}_{0}}{3}-\frac{4c}{3}){x}_{0}$+$\frac{2}{3}{y}_{0}^{2}$=0,又${y}_{0}^{2}$=$\frac{{b}^{2}}{{a}^{2}}({a}^{2}-{x}_{0}^{2})$,
化为:${c}^{2}{x}_{0}^{2}$-2a2cx0+a2(a2-c2)=0,
解得x0=$\frac{a(a+c)}{c}$,或x0=$\frac{a(a-c)}{c}$,
∵-a<x0<a,
∴x0=$\frac{a(a-c)}{c}$,∴0<$\frac{a(a-c)}{c}$<a,
化为:$\frac{1}{2}<e<1$.
则椭圆离心率e的取值范围是($\frac{1}{2}$,1).
故选:D.

点评 本题考查了椭圆的标准方程及其性质、向量坐标运算性质、向量垂直与数量积的关系、不等式的解法与性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.如图网格纸上的小正方形边长为1,粗线是一个三棱锥的三视图,则该三棱锥的外接球表面积为(  )
A.48πB.36πC.24πD.12π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品至少有一件是次品”,则下列结论正确的是(  )
A.A与B互斥B.任何两个均互斥C.B与C互斥D.任何两个均对立

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知集合M={1,2,3},N={2,3,4},则M∪N={1,2,3,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知焦点为F的抛物线C:y2=2px(p>0))上有一点M(m,2$\sqrt{2}$),以M为圆心、|MF|为半径的圆被y轴截得的弦长为2$\sqrt{5}$.
(1)求|MF|;
(2)若倾斜角为$\frac{π}{4}$且经过点(2,0)的直线l与抛物线C相交于A、B两点,求证:OA⊥OB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若x,y∈R,且x=$\sqrt{1-y2}$,则$\frac{y+2}{x+1}$的取值范围是[$\frac{3}{4}$,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将函数f(x)=$\sqrt{3}$sinx-cosx的图象向右平移m个单位(m>0),若所得图象对应的函数为偶函数,则m的最小值是(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{8}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)=x2-bx+a,且f(0)=3,f(2-x)=f(x),则下列关系成立的是(  )
A.f(bx)≥f(axB.f(bx)≤f(ax
C.f(bx)<f(axD.f(bx)与f(ax)的大小关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.$\overrightarrow a$=(-1,-5,-2),$\overrightarrow b$=(x,2,x+2),若$\overrightarrow a⊥\overrightarrow b$,则x=(  )
A.0B.-6C.$-\frac{14}{3}$D.±6

查看答案和解析>>

同步练习册答案