精英家教网 > 高中数学 > 题目详情
14.若{an}是等差数列,且a1=-1,公差为-3,则a8等于(  )
A.-7B.-8C.-22D.27

分析 利用等差数列的通项公式即可得出.

解答 解:a8=-1-3×7=-22.
故选:C.

点评 本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.(文科)设函数$f(x)=\left\{\begin{array}{l}x,x<1\\{x^3}-\frac{1}{x}+1,x≥1\end{array}\right.$,则$f(\frac{1}{f(2)})$=$\frac{2}{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知ω>0,在函数y=sinωx与y=cosωx的图象的交点中,相邻两个交点的横坐标之差的绝对值为2,则ω=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=2sin(ωx+φ)(ω>0,$|φ|<\frac{π}{2}$)的图象与直线y=1的交点中,相邻两个交点距离的最小值为$\frac{π}{3}$,且$f(x)≤f({\frac{π}{12}})$对任意实数x恒成立,则φ=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如下表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{2π}{3}$$\frac{8π}{3}$
Asin(ωx+φ)030-30
(1)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;
(2)令g(x)=f (x+$\frac{π}{3}$)-$\frac{1}{2}$,当x∈[-π,π]时,恒有不等式g(x)-a-3<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.对于无穷数列{xn}和函数f(x),若xn+1=f(xn)(n∈N+),则称f(x)是数列{xn}的母函数.
(Ⅰ)定义在R上的函数g(x)满足:对任意α,β∈R,都有g(αβ)=αg(β)+βg(α),且$g({\frac{1}{2}})=1$;又数列{an}满足${a_n}=g({\frac{1}{2^n}})$.
(1)求证:f(x)=x+2是数列{2nan}的母函数;
(2)求数列{an}的前项n和Sn
(Ⅱ)已知$f(x)=\frac{2016x+2}{x+2017}$是数列{bn}的母函数,且b1=2.若数列$\left\{{\frac{{{b_n}-1}}{{{b_n}+2}}}\right\}$的前n项和为Tn,求证:$25({1-{{0.99}^n}})<{T_n}<250({1-{{0.999}^n}})({n≥2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.cos600° 等于(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.记f(n)为最接近$\sqrt{n}$(n∈N*)的整数,如f(1)=1,f(2)=1,f(3)=2,f(4)=2,f(5)=2,…,若$\frac{1}{f(1)}$+$\frac{1}{f(2)}$+$\frac{1}{f(3)}$+…+$\frac{1}{f(m)}$=4054,则正整数m的值为(  )
A.2016×2017B.20172C.2017×2018D.2018×2019

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.图中,小方格是边长为1的正方形,图中粗线画出的是某几何体的三视图,且该几何体的顶点都在同一球面上,则该几何体的外接球的表面积为(  )
A.32πB.48πC.50πD.64π

查看答案和解析>>

同步练习册答案