分析 令F(x)=sinωx-cosωx=0求出零点,相邻两个横坐标之差的绝对值为2,即可求出ω.
解答 解:由题意,函数y=sinωx与y=cosωx的图象的交点中,相邻两个交点的横坐标之差的绝对值为2.
令F(x)=sinωx-cosωx=0,
可得:$\sqrt{2}$sin(ωx$-\frac{π}{4}$)=0,
即ωx$-\frac{π}{4}$=kπ,k∈Z.
当k=0时,可得一个零点x1=$\frac{π}{4ω}$
当k=1时,可得二个零点x2=$\frac{5π}{4ω}$
那么:|x1-x2|=2,ω>0,
可得$ω=\frac{π}{2}$.
故答案为:$\frac{π}{2}$.
点评 本题考查了三角函数的零点问题和化简能力.属于基础题.
科目:高中数学 来源: 题型:解答题
| $\bar x$ | $\bar y$ | $\bar w$ | $\sum_{i=1}^{10}{({x_i}-\bar x)^2}$ | $\sum_{i=1}^{10}{({w_i}-\bar w)^2}$ | $\sum_{i=1}^{10}({x_i}-\bar x)({y_i}-\bar y)$ | $\sum_{i=1}^{10}({w_i}-\bar w)({y_i}-\bar y)$ |
| 1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{a}<\frac{1}{b}$ | B. | ac2>bc2 | C. | 2-a<2-b | D. | lga>lgb |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com