| $\bar x$ | $\bar y$ | $\bar w$ | $\sum_{i=1}^{10}{({x_i}-\bar x)^2}$ | $\sum_{i=1}^{10}{({w_i}-\bar w)^2}$ | $\sum_{i=1}^{10}({x_i}-\bar x)({y_i}-\bar y)$ | $\sum_{i=1}^{10}({w_i}-\bar w)({y_i}-\bar y)$ |
| 1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
分析 (1)根据散点图是否按直线型分布作答;
(2)根据回归系数公式得出y关于ω的线性回归方程,再得出y关于x的回归方程;
(3)利用基本不等式得出煤气用量的最小值及其成立的条件.
解答 解:(1)$y=c+\frac{d}{x^2}$更适宜作烧水时间y关于开关旋钮旋转的弧度数x的回归方程类型.…(1分)
(2)由公式可得:$\hat d=\frac{{\sum_{i=1}^{10}{({w_i}-\bar w)({y_i}-\bar y)}}}{{\sum_{i=1}^{10}{{{({w_i}-\bar w)}^2}}}}=\frac{16.2}{0.81}=20$,…(3分)
$\hat c=\bar y-\hat d\overline{w}=20.6-20×0.78=5$,…(5分)
所以所求回归方程为$y=5+\frac{20}{x^2}$.…(6分)
(3)设t=kx,则煤气用量$S=yt=kx(5+\frac{20}{x^2})=5kx+\frac{20k}{x}≥2\sqrt{5kx•\frac{20k}{x}}=20k$,…(9分)
当且仅当$5kx=\frac{20k}{x}$时取“=”,即x=2时,煤气用量最小.…(11分)
答:x为2时,烧开一壶水最省煤气. …(12分)
点评 本题考查了可化为线性相关的回归方程的求解,基本不等式的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a,b都为偶数 | B. | a,b不为偶数 | ||
| C. | a,b都不为偶数 | D. | a,b中有一个不为偶数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com