精英家教网 > 高中数学 > 题目详情
4.(文科)设函数$f(x)=\left\{\begin{array}{l}x,x<1\\{x^3}-\frac{1}{x}+1,x≥1\end{array}\right.$,则$f(\frac{1}{f(2)})$=$\frac{2}{17}$.

分析 利用分段函数的表达式,逐步求解函数值即可.

解答 解:设函数$f(x)=\left\{\begin{array}{l}x,x<1\\{x^3}-\frac{1}{x}+1,x≥1\end{array}\right.$,
则f(2)=8-$\frac{1}{2}+1$=$\frac{17}{2}$.
$f(\frac{1}{f(2)})$=f($\frac{2}{17}$)=$\frac{2}{17}$.
故答案为:$\frac{2}{17}$.

点评 本题考查分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴,建立极坐标系,若直线l的参数方程为$\left\{\begin{array}{l}{x=cosα}\\{y={y}_{0}+tsinα}\end{array}\right.$(t为参数,α为l的倾斜角),曲线E的极坐标方程为ρ=4sinθ.射线θ=β,θ=β+$\frac{π}{4}$,θ=β-$\frac{π}{4}$与曲线E分别交于不同于极点的三点A、B、C.
(1)求证:|OB|+|OC|=$\sqrt{2}$|OA|;
(2)当β=$\frac{7π}{12}$时,直线l过B、C两点,求y0与α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数x与烧开一壶水所用时间y的一组数据,且作了一定的数据处理(如表),得到了散点图(如图).
$\bar x$$\bar y$$\bar w$$\sum_{i=1}^{10}{({x_i}-\bar x)^2}$$\sum_{i=1}^{10}{({w_i}-\bar w)^2}$$\sum_{i=1}^{10}({x_i}-\bar x)({y_i}-\bar y)$$\sum_{i=1}^{10}({w_i}-\bar w)({y_i}-\bar y)$
1.4720.60.782.350.81-19.316.2
表中${w_i}=\frac{1}{x_i^2},\overline{w}=\frac{1}{10}\sum_{i=1}^{10}{w_i}$.
(1)根据散点图判断,y=a+bx与$y=c+\frac{d}{x^2}$哪一个更适宜作烧水时间y关于开关旋钮旋转的弧度数x的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立y关于x的回归方程;
(3)若旋转的弧度数x与单位时间内煤气输出量t成正比,那么x为多少时,烧开一壶水最省煤气?
附:对于一组数据(u1,v1),(u2,v2),(u3,v3),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为$\hat β=\frac{{\sum_{i=1}^n{({v_i}-\bar v)({u_i}-\bar u)}}}{{\sum_{i=1}^n{{{({u_i}-\bar u)}^2}}}},\hat α=\bar v-\hat β\bar u$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,且$\overrightarrow{m}$=($\sqrt{3}$,2sinA),$\overrightarrow{n}$=(c,a)若$\overrightarrow{m}∥\overrightarrow{n}$
(Ⅰ)求角C的大小;
(Ⅱ)若c=$\sqrt{7}$,且△ABC的面积为$\frac{3\sqrt{3}}{2}$,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.《九章算术》是我国古代内容极为丰富的数学名著,书中将底面为直角三角形,且侧棱与底面垂直的棱柱称为堑堵,将底面为矩形的棱台称为刍童.在如图所示的堑堵ABM-DCP与刍童的组合体中AB=AD,A1B1=A1D1.棱台体积公式:V=$\frac{1}{3}$(S′+$\sqrt{S′S}$+S)h,其中S′,S分别为棱台上、下底面面积,h为棱台高.
(Ⅰ)证明:直线BD⊥平面MAC;
(Ⅱ)若AB=1,A1D1=2,MA=$\sqrt{3}$,三棱锥A-A1B1D1的体积V=$\frac{2\sqrt{3}}{3}$,求该组合体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)=xln x-ax2+(2a-1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的单调区间;
(2)已知f(x)在x=1处取得极大值,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若复数$\frac{2+ai}{1-i}({a∈R})$是纯虚数(i是虚数单位),则复数z=a+(a-3)i在复平面内对应的点位于第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a,b∈R,若a>b,则(  )
A.$\frac{1}{a}<\frac{1}{b}$B.ac2>bc2C.2-a<2-bD.lga>lgb

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若{an}是等差数列,且a1=-1,公差为-3,则a8等于(  )
A.-7B.-8C.-22D.27

查看答案和解析>>

同步练习册答案