分析 (Ⅰ)根据向量的数量积以及正弦定理可得sinC=$\frac{\sqrt{3}}{2}$,即可求出C;
(Ⅱ)根据三角形的面积公式和余弦定理即可求出.
解答 解:(Ⅰ)由$\overrightarrow{m}$∥$\overrightarrow{n}$得$\sqrt{3}$a=2csinA,及正弦定理得$\sqrt{3}$sinA=2sinCsinA,
∵A∈(0,π),
∴sinA≠0,
∴sinC=$\frac{\sqrt{3}}{2}$,
∵△ABC中是锐角三角形,
∴C=$\frac{π}{3}$;
(Ⅱ)∵S△ABC=$\frac{1}{2}$absinC=$\frac{3\sqrt{3}}{2}$,
∴ab=6,
由余弦定理得c2=a2+b2-2abcosC,
∴7=a2+b2-ab=(a+b)2-3ab═(a+b)2-18,
解得a+b=5或a+b=-5(舍),
∴a+b=5.
点评 本题考查了向量的数量积的运算和正弦定理、余弦定理和三角形的面积公式,考查了学生的运算能力,属于中档题
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com