精英家教网 > 高中数学 > 题目详情
7.已知{an}是等差数列,满足a2=6,a5=15,数列{bn}满足b2=8,b5=31,且{bn-an}为等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和.

分析 (1)通过a2=6、a5=15可求出公差,进而可得通项公式an=3n;通过q3=$\frac{{b}_{5}-{a}_{5}}{{b}_{2}-{a}_{2}}$=8可得公比,进而可得{bn-an}的通项公式,从而${b}_{n}=3n+{2}^{n-1}$;
(2)通过(1)可知${b}_{n}=3n+{2}^{n-1}$,进而利用分组法求和可得结论.

解答 解:(1)设等差数列{an}的公差为d,由题意得d=$\frac{{a}_{5}-{a}_{2}}{3}=\frac{15-6}{3}=3$,
所以a1=3,所以an=a1+(n-1)d=3n(n?N+).
设等比数列{bn-an}的公比为q,由题意得q3=$\frac{{b}_{5}-{a}_{5}}{{b}_{2}-{a}_{2}}$=8,
解得q=2.所以${b}_{n}-{a}_{n}=({b}_{2}-{a}_{2}){q}^{n-2}={2}^{n-1}(n?{N}_{+})$,
所以${b}_{n}=3n+{2}^{n-1}$(n?N+).
(2)由(1)知${b}_{n}=3n+{2}^{n-1}$,数列{an}的前n项和为$\frac{3}{2}$n(n+1),
数列{2n-1}的前n项和为2n-1.
所以数列{bn}的前n项和为$\frac{3}{2}$n(n+1)+2n-1.

点评 本题考查数列的通项及前n项和,考查运算求解能力,考查分组法求和,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.有一个奇数列1,3,5,7,9,…,现进行如下分组:第1组含有一个数{1},第2组含两个数{3,5};第3组含三个数{7,9,11};…试观察每组内各数之和与其组的编号数n的关系为等于n3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=2sin(2ωx+\frac{π}{6})+1$(其中0<ω<2),若直线$x=\frac{π}{6}$是函数f(x)图象的一条对称轴.
(1)求ω及f(x)的最小正周期;
(2)求函数f(x)在$x∈[{-\frac{π}{2},\frac{π}{2}}]$上的单调递减区间.
(3)若函数g(x)=f(x)+a在区间$[{0,\frac{π}{2}}]$上的图象与x轴没有交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数x与烧开一壶水所用时间y的一组数据,且作了一定的数据处理(如表),得到了散点图(如图).
$\bar x$$\bar y$$\bar w$$\sum_{i=1}^{10}{({x_i}-\bar x)^2}$$\sum_{i=1}^{10}{({w_i}-\bar w)^2}$$\sum_{i=1}^{10}({x_i}-\bar x)({y_i}-\bar y)$$\sum_{i=1}^{10}({w_i}-\bar w)({y_i}-\bar y)$
1.4720.60.782.350.81-19.316.2
表中${w_i}=\frac{1}{x_i^2},\overline{w}=\frac{1}{10}\sum_{i=1}^{10}{w_i}$.
(1)根据散点图判断,y=a+bx与$y=c+\frac{d}{x^2}$哪一个更适宜作烧水时间y关于开关旋钮旋转的弧度数x的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立y关于x的回归方程;
(3)若旋转的弧度数x与单位时间内煤气输出量t成正比,那么x为多少时,烧开一壶水最省煤气?
附:对于一组数据(u1,v1),(u2,v2),(u3,v3),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为$\hat β=\frac{{\sum_{i=1}^n{({v_i}-\bar v)({u_i}-\bar u)}}}{{\sum_{i=1}^n{{{({u_i}-\bar u)}^2}}}},\hat α=\bar v-\hat β\bar u$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.点M的直角坐标是$(-\sqrt{3},-1)$,则点M的极坐标为(  )
A.$(2,\frac{5π}{6})$B.$(2,\frac{7π}{6})$C.$(2,\frac{11π}{6})$D.$(2,\frac{π}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,且$\overrightarrow{m}$=($\sqrt{3}$,2sinA),$\overrightarrow{n}$=(c,a)若$\overrightarrow{m}∥\overrightarrow{n}$
(Ⅰ)求角C的大小;
(Ⅱ)若c=$\sqrt{7}$,且△ABC的面积为$\frac{3\sqrt{3}}{2}$,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.《九章算术》是我国古代内容极为丰富的数学名著,书中将底面为直角三角形,且侧棱与底面垂直的棱柱称为堑堵,将底面为矩形的棱台称为刍童.在如图所示的堑堵ABM-DCP与刍童的组合体中AB=AD,A1B1=A1D1.棱台体积公式:V=$\frac{1}{3}$(S′+$\sqrt{S′S}$+S)h,其中S′,S分别为棱台上、下底面面积,h为棱台高.
(Ⅰ)证明:直线BD⊥平面MAC;
(Ⅱ)若AB=1,A1D1=2,MA=$\sqrt{3}$,三棱锥A-A1B1D1的体积V=$\frac{2\sqrt{3}}{3}$,求该组合体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若复数$\frac{2+ai}{1-i}({a∈R})$是纯虚数(i是虚数单位),则复数z=a+(a-3)i在复平面内对应的点位于第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x-3.
(1)求f(3)+f(-1)的值;
(2)求f(x)在R上的解析式;
(3)画出函数f(x)的图象,并写出函数f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案