精英家教网 > 高中数学 > 题目详情
3.数列{an}满足${2^n}{a_n}={2^{n+1}}{a_{n+1}}-1$,且a1=1,若${a_n}<\frac{1}{5}$,则n的最小值为(  )
A.4B.5C.6D.7

分析 依题意,得${2}^{n+1}{a}_{n+1}-{2}^{n}{a}_{n}=1$,可判断出数列{2nan}为公差是1的等差数列,进一步可求得21a1=2,即其首项为2,从而可得an=$\frac{n+1}{{2}^{n}}$,继而可得答案.

解答 解:∵${2^n}{a_n}={2^{n+1}}{a_{n+1}}-1$,即${2}^{n+1}{a}_{n+1}-{2}^{n}{a}_{n}=1$,
∴数列{2nan}为公差是1的等差数列,
又a1=1,
∴21a1=2,即其首项为2,
∴2nan=2+(n-1)×1=n+1,
∴an=$\frac{n+1}{{2}^{n}}$.
∴a1=1,a2=$\frac{3}{4}$,a3=$\frac{1}{2}$,a4=$\frac{5}{16}$>$\frac{1}{5}$,a5=$\frac{6}{32}$=$\frac{3}{16}$<$\frac{3}{15}$=$\frac{1}{5}$,
∴若${a_n}<\frac{1}{5}$,则n的最小值为5,
故选:B.

点评 本题考查数列递推式,判断出数列{2nan}为公差是1的等差数列,并求得an=$\frac{n+1}{{2}^{n}}$是关键,考查分析应用能力.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ)证明:PA⊥BD;
(II)若PD=AD,求AD与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴,建立极坐标系,若直线l的参数方程为$\left\{\begin{array}{l}{x=cosα}\\{y={y}_{0}+tsinα}\end{array}\right.$(t为参数,α为l的倾斜角),曲线E的极坐标方程为ρ=4sinθ.射线θ=β,θ=β+$\frac{π}{4}$,θ=β-$\frac{π}{4}$与曲线E分别交于不同于极点的三点A、B、C.
(1)求证:|OB|+|OC|=$\sqrt{2}$|OA|;
(2)当β=$\frac{7π}{12}$时,直线l过B、C两点,求y0与α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若直线l1:x-2y+1=0与l2:2x+ay-2=0平行,则l1与l2的距离为(  )
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{{2\sqrt{5}}}{5}$C.$\frac{1}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=2sin(2ωx+\frac{π}{6})+1$(其中0<ω<2),若直线$x=\frac{π}{6}$是函数f(x)图象的一条对称轴.
(1)求ω及f(x)的最小正周期;
(2)求函数f(x)在$x∈[{-\frac{π}{2},\frac{π}{2}}]$上的单调递减区间.
(3)若函数g(x)=f(x)+a在区间$[{0,\frac{π}{2}}]$上的图象与x轴没有交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知△ABC的内角A,B,C的对边分别为a,b,c,且满足2cos C(a cos B+b cos A )=c.
①求C;    
②若c=$\sqrt{7}$,ab=6.
求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数x与烧开一壶水所用时间y的一组数据,且作了一定的数据处理(如表),得到了散点图(如图).
$\bar x$$\bar y$$\bar w$$\sum_{i=1}^{10}{({x_i}-\bar x)^2}$$\sum_{i=1}^{10}{({w_i}-\bar w)^2}$$\sum_{i=1}^{10}({x_i}-\bar x)({y_i}-\bar y)$$\sum_{i=1}^{10}({w_i}-\bar w)({y_i}-\bar y)$
1.4720.60.782.350.81-19.316.2
表中${w_i}=\frac{1}{x_i^2},\overline{w}=\frac{1}{10}\sum_{i=1}^{10}{w_i}$.
(1)根据散点图判断,y=a+bx与$y=c+\frac{d}{x^2}$哪一个更适宜作烧水时间y关于开关旋钮旋转的弧度数x的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立y关于x的回归方程;
(3)若旋转的弧度数x与单位时间内煤气输出量t成正比,那么x为多少时,烧开一壶水最省煤气?
附:对于一组数据(u1,v1),(u2,v2),(u3,v3),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为$\hat β=\frac{{\sum_{i=1}^n{({v_i}-\bar v)({u_i}-\bar u)}}}{{\sum_{i=1}^n{{{({u_i}-\bar u)}^2}}}},\hat α=\bar v-\hat β\bar u$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,且$\overrightarrow{m}$=($\sqrt{3}$,2sinA),$\overrightarrow{n}$=(c,a)若$\overrightarrow{m}∥\overrightarrow{n}$
(Ⅰ)求角C的大小;
(Ⅱ)若c=$\sqrt{7}$,且△ABC的面积为$\frac{3\sqrt{3}}{2}$,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a,b∈R,若a>b,则(  )
A.$\frac{1}{a}<\frac{1}{b}$B.ac2>bc2C.2-a<2-bD.lga>lgb

查看答案和解析>>

同步练习册答案