精英家教网 > 高中数学 > 题目详情
17.已知函数$f(x)=\sqrt{3}sin\frac{π}{k}x(k>0)$图象上相邻的最大值点和最小值点都在曲线x2+y2=k2上,则f(x)的最小正周期为(  )
A.4B.3C.2D.1

分析 由题意,f(x)的图象上相邻的最大值点和最小值点都在曲线x2+y2=k2上,可知最大值和最小值的距离为曲线圆的直径.可得k的值,即可得f(x)的最小正周期.

解答 解:由题意,函数$f(x)=\sqrt{3}sin\frac{π}{k}x(k>0)$,其周期T=$\frac{2π}{\frac{π}{k}}=2k$.
f(x)的图象上相邻的最大值点和最小值点都在曲线x2+y2=k2上,
可知最大值和最小值的距离为曲线圆的直径.即2r=2k.
∵最大值点和最小值点的纵坐标距离为2$\sqrt{3}$,横坐标距离为$\frac{1}{2}$T,
∴12+$\frac{{T}^{2}}{4}$=(2k)2,即12+k2=4k2
∴k=2
周期T=$\frac{2π}{\frac{π}{k}}=2k$=4.
故选A.

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.双曲线$\frac{{x}^{2}}{m+5}$-$\frac{{y}^{2}}{20-m}$=1的焦距是(  )
A.4B.6C.10D.与m有关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知△ABC的内角A,B,C的对边分别为a,b,c,且满足2cos C(a cos B+b cos A )=c.
①求C;    
②若c=$\sqrt{7}$,ab=6.
求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知等差数列{an}中,a3=4,a5=8,则a11=(  )
A.12B.16C.20D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,且$\overrightarrow{m}$=($\sqrt{3}$,2sinA),$\overrightarrow{n}$=(c,a)若$\overrightarrow{m}∥\overrightarrow{n}$
(Ⅰ)求角C的大小;
(Ⅱ)若c=$\sqrt{7}$,且△ABC的面积为$\frac{3\sqrt{3}}{2}$,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知平面ABEF⊥平面ABCD,四边形ABEF是正方形,四边形ABCD是菱形,且BC=2,∠BAD=60°,点G,H分别为边CD,DA的中点,点M是线段BE上的动点.
(Ⅰ)求证:GH⊥平面BDM
(Ⅱ)求三棱锥D-MGH的体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)=xln x-ax2+(2a-1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的单调区间;
(2)已知f(x)在x=1处取得极大值,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若$|{\overrightarrow a}|=\sqrt{2},|{\overrightarrow b}|=2$,且$({\overrightarrow a-\overrightarrow b})⊥\overrightarrow a$,则$\overrightarrow a$与$\overrightarrow b$的夹角是(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在四棱锥P-ABCD中,△PAB为正三角形,四边形ABCD为矩形,平面PAB⊥平面ABCD,AB=2AD,M、N分别为PB、PC的中点.
(Ⅰ)求证:MN∥平面PAD;
(Ⅱ)求二面角B-AM-C的大小.

查看答案和解析>>

同步练习册答案