精英家教网 > 高中数学 > 题目详情
10.用反证法证明命题“a,b∈N,如果ab为偶数,那么a,b中至少有一个为偶数”,则正确的假设内容是(  )
A.a,b都为偶数B.a,b不为偶数
C.a,b都不为偶数D.a,b中有一个不为偶数

分析 找出题中的题设,然后根据反证法的定义对其进行否定.

解答 解:∵命题“a•b(a,b∈Z*)为偶数,那么a,b中至少有一个为偶数.”
可得题设为,“a•b(a,b∈Z*)为偶数,
∴反设的内容是:假设a,b都为奇数(a,b都不为偶数),
故选:C

点评 此题考查了反证法的定义,反证法在数学中经常运用,当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓“正难则反“.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.甲、乙、丙三人独立解决同一道数学题,如果三人分别完成的概率依次是p1、p2、p3,那么至少有一人解决这道题的概率是(  )
A.p1+p2+p3B.1-(1-p1)(1-p2)(1-p3C.1-p1p2p3D.p1p2p3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)是R上的可导函数,其导函数为f'(x),若对任意实数x,都有f(x)>f'(x),且f(x)-1为奇函数,则不等式f(x)<ex的解集为(  )
A.(-∞,0)B.(-∞,e4C.(e4,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=2sin(2ωx+\frac{π}{6})+1$(其中0<ω<2),若直线$x=\frac{π}{6}$是函数f(x)图象的一条对称轴.
(1)求ω及f(x)的最小正周期;
(2)求函数f(x)在$x∈[{-\frac{π}{2},\frac{π}{2}}]$上的单调递减区间.
(3)若函数g(x)=f(x)+a在区间$[{0,\frac{π}{2}}]$上的图象与x轴没有交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设数列{an}的前n项和为Sn,且2an+Sn=-1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若实数λ满足$\frac{1}{{{{({S_n}+1)}^2}}}-\frac{1}{a_n^2}≥\frac{λ}{{{a_n}{a_{n+1}}}}$,求λ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数x与烧开一壶水所用时间y的一组数据,且作了一定的数据处理(如表),得到了散点图(如图).
$\bar x$$\bar y$$\bar w$$\sum_{i=1}^{10}{({x_i}-\bar x)^2}$$\sum_{i=1}^{10}{({w_i}-\bar w)^2}$$\sum_{i=1}^{10}({x_i}-\bar x)({y_i}-\bar y)$$\sum_{i=1}^{10}({w_i}-\bar w)({y_i}-\bar y)$
1.4720.60.782.350.81-19.316.2
表中${w_i}=\frac{1}{x_i^2},\overline{w}=\frac{1}{10}\sum_{i=1}^{10}{w_i}$.
(1)根据散点图判断,y=a+bx与$y=c+\frac{d}{x^2}$哪一个更适宜作烧水时间y关于开关旋钮旋转的弧度数x的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立y关于x的回归方程;
(3)若旋转的弧度数x与单位时间内煤气输出量t成正比,那么x为多少时,烧开一壶水最省煤气?
附:对于一组数据(u1,v1),(u2,v2),(u3,v3),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为$\hat β=\frac{{\sum_{i=1}^n{({v_i}-\bar v)({u_i}-\bar u)}}}{{\sum_{i=1}^n{{{({u_i}-\bar u)}^2}}}},\hat α=\bar v-\hat β\bar u$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.点M的直角坐标是$(-\sqrt{3},-1)$,则点M的极坐标为(  )
A.$(2,\frac{5π}{6})$B.$(2,\frac{7π}{6})$C.$(2,\frac{11π}{6})$D.$(2,\frac{π}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.《九章算术》是我国古代内容极为丰富的数学名著,书中将底面为直角三角形,且侧棱与底面垂直的棱柱称为堑堵,将底面为矩形的棱台称为刍童.在如图所示的堑堵ABM-DCP与刍童的组合体中AB=AD,A1B1=A1D1.棱台体积公式:V=$\frac{1}{3}$(S′+$\sqrt{S′S}$+S)h,其中S′,S分别为棱台上、下底面面积,h为棱台高.
(Ⅰ)证明:直线BD⊥平面MAC;
(Ⅱ)若AB=1,A1D1=2,MA=$\sqrt{3}$,三棱锥A-A1B1D1的体积V=$\frac{2\sqrt{3}}{3}$,求该组合体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求倾斜角为直线y=-x+1的倾斜角的$\frac{1}{3}$,且分别满足下列条件的直线方程:
(1)经过点(-4,1);
(2)在y轴上的截距为-10.

查看答案和解析>>

同步练习册答案