精英家教网 > 高中数学 > 题目详情
1.已知f(x)是R上的可导函数,其导函数为f'(x),若对任意实数x,都有f(x)>f'(x),且f(x)-1为奇函数,则不等式f(x)<ex的解集为(  )
A.(-∞,0)B.(-∞,e4C.(e4,+∞)D.(0,+∞)

分析 构造函数g(x)=$\frac{f(x)}{{e}^{x}}$,利用导数判断g(x)的单调性,根据单调性得出g(x)<1的解.

解答 解:设g(x)=$\frac{f(x)}{{e}^{x}}$,则g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$<0,
∴g(x)是减函数,
∵f(x)-1为奇函数,∴f(0)-1=0,即f(0)=1,
∴g(0)=1,
∴当x>0时,g(x)=$\frac{f(x)}{{e}^{x}}$<1,即f(x)<ex
故选D.

点评 本题考查了导数与函数单调性的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.2016年夏季大美青海又迎来了旅游热,甲、乙、丙三位游客被询问是否去过陆心之海青海湖,海北百里油菜花海,茶卡天空之境三个地方时,
甲说:我去过的地方比乙多,但没去过海北百里油菜花海;
乙说:我没去过茶卡天空之境;
丙说:我们三人去过同一个地方.
由此可判断乙去过的地方为陆心之海青海湖.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow{a}$=(1,m),$\overrightarrow{b}$=(2,-1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则m=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.将命题“菱形的对角线互相垂直”改为“若p,则q”的形式,再写出它的逆命题、否命题、逆否命题.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π),点A,B分别是f(x)的图象与y轴、x轴的交点,C,D分别是f(x)的图象上横坐标为$\frac{π}{2}$、$\frac{2π}{3}$的两点,CD∥x轴,A,B,D共线.
(Ⅰ)求ω,φ的值;
(Ⅱ)若关于x的方程f(x)=k+sin2x在区间[$\frac{π}{12}$,$\frac{π}{2}$]上恰有唯一实根,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.数列{an}满足a1=0,且an,n+1,an+1成等差数列.
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知角θ的顶点与原点重合,始边与x轴非负半轴重合,终边过点P(-1,2),则cosθ=(  )
A.-1B.2C.$-\frac{{\sqrt{5}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.用反证法证明命题“a,b∈N,如果ab为偶数,那么a,b中至少有一个为偶数”,则正确的假设内容是(  )
A.a,b都为偶数B.a,b不为偶数
C.a,b都不为偶数D.a,b中有一个不为偶数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}满足a1=1,an=a1+$\frac{1}{2}{a_2}+\frac{1}{3}{a_3}+…+\frac{1}{n-1}{a_{n-1}}$(n≥2,n∈N*),若ak=2017,则k=2017.

查看答案和解析>>

同步练习册答案